[phenixbb] Searchable phenixbb

Mark Collins mcollins at convex.hhmi.columbia.edu
Fri Apr 11 12:49:12 PDT 2008


Ok first of all, DOH! I always forget I can do that in google.  But as 
Pavel suggests I put in my questions anyway, here it goes....
>From the Yeates twinning server and xtriage my data seems to be twinned 
at approx 22-25%, the log is attached.
I have an MR solution from a related MAD structure I solved and Arp/Warp 
rebuilt 99% of this structure without any account for twinning.  
Upon refinement with twinning I get what I think are overly good (refined) 
R/Rf values (particularily with waters = refine 3).  And refinement 
without twining gives R/Rf on the bad side for my resolution (2A) but not 
so terrible.  And these improve to "reasonable" R/Rf with the inclusion of 
TLS and waters (= refine 5).  I have looked at the structures and maps for 
both refine3-twin and refine5-notwin and see little differences but 
nothing major.  So my dilemma is which structure to continue refiniing the 
twinned or not twinned+TLS, how do I know which is correct?
My other questions alternate conformations, is it possible to 
refine the occupancy?

Thanks Mark






On Fri, 11 Apr 2008, Francis E Reyes wrote:

> http://www.google.com/search?hl=en&q=phenixbb+site%3Aphenix-online.org&btnG=Search
> 
> 
> Google seems to be indexing it.
> 
> On Apr 11, 2008, at 12:33 PM, Mark Collins wrote:
> 
> > Hi phenix community
> > Is there a search function for this bb, as there is for the ccp4bb?  I
> > have some questions about twinning, TLS and alternate conformations in
> > phenix.refine.  I hate repeating questions that have been answered
> > previously but going thru the Archives month by month is proving to  
> > be a
> > little slow.
> > Thanks Mark Collins
> > _______________________________________________
> > phenixbb mailing list
> > phenixbb at phenix-online.org
> > http://www.phenix-online.org/mailman/listinfo/phenixbb
> 
> ---------------------------------------------
> Francis Reyes M.Sc.
> 215 UCB
> University of Colorado at Boulder
> 
> gpg --keyserver pgp.mit.edu --recv-keys 67BA8D5D
> 
> 8AE2 F2F4 90F7 9640 28BC  686F 78FD 6669 67BA 8D5D
> 
> _______________________________________________
> phenixbb mailing list
> phenixbb at phenix-online.org
> http://www.phenix-online.org/mailman/listinfo/phenixbb
> 
-------------- next part --------------
#############################################################
##                     phenix.xtriage                      ##
##                                                         ##
##     P.H. Zwart, R.W. Grosse-Kunstleve & P.D. Adams      ##
##                                                         ##
#############################################################
#phil __OFF__
  This cryptic code, together with the tags __ON__ and __OFF__
  allows one to use the log file as an input file for xtriage.
  Try : phenix.xtriage  <logfile> to give it a try!

Date 2008-04-08 Time 07:38:20 EDT -0400 (1207654700.68 s)


##-------------------------------------------##
## WARNING:                                  ##
## Number of residues unspecified            ##
##-------------------------------------------##
##-------------------------------------------##
## Unit cell defined manually, will ignore
## specification in reflection file: 
## From file :  (71.651, 71.651, 37.102, 90, 90, 90)
## From input:  (71.651, 71.651, 37.103, 90, 90, 90)
##-------------------------------------------##
##-------------------------------------------##
## Space group defined manually, will ignore
## specification in reflection file: 
## From file :  P 43
## From input:  P 43
##-------------------------------------------##


Effective parameters: 
#phil __ON__
scaling.input {
  parameters {
    asu_contents {
      n_residues = None
      n_bases = None
      n_copies_per_asu = None
    }
    misc_twin_parameters {
      missing_symmetry {
        tanh_location = 0.08
        tanh_slope = 50
      }
      twinning_with_ncs {
        perform_analyses = False
        n_bins = 7
      }
      twin_test_cuts {
        low_resolution = 10
        high_resolution = None
        isigi_cut = 3
        completeness_cut = 0.85
      }
    }
    reporting {
      verbose = 1
      log = "twin.log"
      ccp4_style_graphs = True
    }
  }
  xray_data {
    file_name = "output-horiz.sca"
    obs_labels = None
    calc_labels = None
    unit_cell = 71.651 71.651 37.103 90 90 90
    space_group = "P 43"
    high_resolution = None
    low_resolution = None
    reference {
      data {
        file_name = None
        labels = None
        unit_cell = None
        space_group = None
      }
    }
  }
}
#phil __END__


Symmetry, cell and reflection file content summary

Miller array info: output-horiz.sca:i_obs,sigma
Observation type: xray.amplitude
Type of data: double, size=12606
Type of sigmas: double, size=12606
Number of Miller indices: 12606
Anomalous flag: False
Unit cell: (71.651, 71.651, 37.103, 90, 90, 90)
Space group: P 43 (No. 78)
Systematic absences: 0
Centric reflections: 952
Resolution range: 29.9345 2.01276
Completeness in resolution range: 0.989171
Completeness with d_max=infinity: 0.988706

##----------------------------------------------------##
##                    Basic statistics                ##
##----------------------------------------------------##

Number of residues unknown, assuming 50% solvent content

----------------------------------------------------------------
|              Best guess :  174  residues in the asu          |
----------------------------------------------------------------


Completeness and data strength analyses 

  The following table lists the completeness in various resolution
  ranges, after applying a I/sigI cut. Miller indices for which
  individual I/sigI values are larger than the value specified in
  the top row of the table, are retained, while other intensities
  are discarded. The resulting completeness profiles are an indication
  of the strength of the data.

----------------------------------------------------------------------------------------
| Res. Range   | I/sigI>1  | I/sigI>2  | I/sigI>3  | I/sigI>5  | I/sigI>10 | I/sigI>15 |
----------------------------------------------------------------------------------------
| 29.94 - 4.96 | 95.8%     | 95.8%     | 95.8%     | 95.8%     | 95.1%     | 94.2%     |
|  4.96 - 3.94 | 98.1%     | 98.1%     | 98.1%     | 98.1%     | 97.7%     | 97.2%     |
|  3.94 - 3.44 | 98.9%     | 98.9%     | 98.9%     | 98.9%     | 97.8%     | 96.4%     |
|  3.44 - 3.13 | 99.4%     | 99.3%     | 98.9%     | 98.5%     | 96.7%     | 94.5%     |
|  3.13 - 2.90 | 99.2%     | 98.6%     | 98.4%     | 97.5%     | 96.1%     | 91.5%     |
|  2.90 - 2.73 | 99.4%     | 99.3%     | 98.8%     | 97.6%     | 92.0%     | 83.3%     |
|  2.73 - 2.59 | 99.6%     | 99.1%     | 98.0%     | 95.1%     | 88.3%     | 76.9%     |
|  2.59 - 2.48 | 99.4%     | 98.9%     | 97.8%     | 93.4%     | 82.0%     | 65.1%     |
|  2.48 - 2.39 | 99.4%     | 98.3%     | 96.7%     | 91.7%     | 76.4%     | 58.5%     |
|  2.39 - 2.30 | 99.0%     | 98.1%     | 95.5%     | 89.5%     | 68.2%     | 46.1%     |
|  2.30 - 2.23 | 98.8%     | 96.3%     | 93.4%     | 87.0%     | 64.9%     | 44.0%     |
|  2.23 - 2.17 | 99.2%     | 97.2%     | 94.2%     | 86.9%     | 59.3%     | 36.9%     |
|  2.17 - 2.11 | 99.4%     | 97.9%     | 93.9%     | 83.3%     | 56.3%     | 35.4%     |
|  2.11 - 2.06 | 98.7%     | 95.1%     | 90.1%     | 76.7%     | 39.8%     | 22.6%     |
----------------------------------------------------------------------------------------

  The completeness of data for which I/sig(I)>3.00, exceeds  85% for
  for resolution ranges lower than 2.06A.
  The data are cut at this resolution for the potential twin tests 
  and intensity statistics.
ML estimate of overall B_cart value of output-horiz.sca:i_obs,sigma:
22.55,  0.00,  0.00
       22.55,  0.00
              26.87
Equivalent representation as U_cif: 
 0.29, -0.00, -0.00
        0.29,  0.00
               0.34

Eigen analyses of B-cart:
                 Value   Vector
Eigenvector 1 :  26.870  ( 0.00,  0.00,  1.00)
Eigenvector 2 :  22.554  (-0.71,  0.71, -0.00)
Eigenvector 3 :  22.554  ( 0.71,  0.71, -0.00)

ML estimate of  -log of scale factor of output-horiz.sca:i_obs,sigma:
-1.39


Low resolution completeness analyses 

 The following table shows the completeness
 of the data to 5 Angstrom.
unused:         - 29.9350 [ 0/6 ] 0.000
bin  1: 29.9350 - 10.6345 [81/97] 0.835
bin  2: 10.6345 -  8.5046 [74/89] 0.831
bin  3:  8.5046 -  7.4485 [81/82] 0.988
bin  4:  7.4485 -  6.7761 [88/89] 0.989
bin  5:  6.7761 -  6.2953 [84/84] 1.000
bin  6:  6.2953 -  5.9271 [90/91] 0.989
bin  7:  5.9271 -  5.6323 [88/88] 1.000
bin  8:  5.6323 -  5.3886 [77/78] 0.987
bin  9:  5.3886 -  5.1823 [83/85] 0.976
bin 10:  5.1823 -  5.0043 [90/91] 0.989
unused:  5.0043 -         [ 0/0 ]



Mean intensity analyses 
 Analyses of the mean intensity. 
 Inspired by: Morris et al. (2004). J. Synch. Rad.11, 56-59.
 The following resolution shells are worrisome: 
------------------------------------------------
| d_spacing | z_score | compl. | <Iobs>/<Iexp> |
------------------------------------------------
     None
------------------------------------------------

Possible outliers 
  Inspired by: Read, Acta Cryst. (1999). D55, 1759-1764

 Acentric reflections:

            None 

 Centric reflections:

            None 


Ice ring related problems

 The following statistics were obtained from ice-ring 
 insensitive resolution ranges 
  mean bin z_score      : 1.14
      ( rms deviation   : 0.73 )
  mean bin completeness : 0.98
     ( rms deviation   : 0.04 )

 The following table shows the z-scores 
 and completeness in ice-ring sensitive areas.
 Large z-scores and high completeness in these 
 resolution ranges might be a reason to re-assess
 your data processsing if ice rings were present.

------------------------------------------------
| d_spacing | z_score | compl. | Rel. Ice int. |
------------------------------------------------
|    3.897  |   0.69  |   0.98 |     1.000     |
|    3.669  |   0.01  |   0.99 |     0.750     |
|    3.441  |   0.52  |   0.99 |     0.530     |
|    2.671  |   1.03  |   1.00 |     0.170     |
|    2.249  |   0.19  |   0.99 |     0.390     |
|    2.072  |   1.78  |   0.99 |     0.300     |
------------------------------------------------

 Abnormalities in mean intensity or completeness at
 resolution ranges with a relative ice ring intensity
 lower than 0.10 will be ignored.

 No ice ring related problems detected.
 If ice rings were present, the data does not look
 worse at ice ring related d_spacings as compared
 to the rest of the data set 






$TABLE: Intensity plots:
$GRAPHS
:Intensity plots 
:A:1,2,3,4:
$$
1/resol^2   <I>_smooth_approximation   <I>_via_binning   <I>_expected   $$ 
$$
0.010291   59304.370307   72799.297481   70847.324704
0.014291   44989.568369   47846.761766   55028.923661
0.018291   35096.107360   33339.527411   40629.946375
0.022291   31627.588448   29012.471832   35287.329256
0.026291   33262.095920   31624.557468   35543.988960
0.030291   39236.538585   32025.694596   39388.738906
0.034291   49143.666179   47546.802075   48145.858574
0.038291   62121.563703   66649.910430   61732.181019
0.042291   76324.498727   82510.955555   76767.935842
0.046291   89148.485404   98817.612057   88824.475207
0.050291   98195.075115   90275.505654   95347.661275
0.054291   102274.491540   106124.877180   96650.655573
0.058291   101698.457340   102125.151886   94894.080050
0.062291   97793.063826   90122.172304   92378.658541
0.066291   92141.787920   96062.608875   90377.579015
0.070291   86040.990991   84264.740235   88936.367114
0.074291   80302.658525   87337.560997   87372.464041
0.078291   75295.401823   81291.154240   84952.456348
0.082291   71075.159017   69631.222697   81345.520577
0.086291   67515.976363   73674.274028   76719.564657
0.090291   64411.083445   65634.976745   71567.485252
0.094291   61544.383780   58707.369462   66441.319443
0.098291   58738.991249   57011.899236   61745.601008
0.102291   55886.301964   52529.814029   57658.079223
0.106291   52955.914565   52145.999358   54165.459448
0.110291   49987.334908   49509.437501   51157.447304
0.114291   47067.968810   50316.068440   48518.741277
0.118291   44305.203639   40621.147375   46181.627981
0.122291   41800.764300   40112.346731   44132.004434
0.126291   39632.783778   35739.610444   42384.015343
0.130291   37847.000953   39952.634621   40946.744762
0.134291   36455.345677   40429.911655   39802.090824
0.138291   35438.954272   34119.503846   38902.020380
0.142291   34753.158400   35692.053257   38182.363807
0.146291   34333.327237   34901.534966   37583.608592
0.150291   34101.712236   33202.236165   37068.177552
0.154291   33976.013741   33937.621175   36627.238198
0.158291   33879.982254   32750.876703   36275.628293
0.162291   33755.136687   34431.607117   36038.406405
0.166291   33571.259520   34504.897277   35935.148682
0.170291   33332.631658   36035.022955   35967.968004
0.174291   33077.654511   31216.796275   36116.962314
0.178291   32871.388377   30913.107256   36343.632758
0.182291   32792.553660   37871.114491   36600.015005
0.186291   32917.479032   31642.315171   36839.714377
0.190291   33302.920663   32769.336089   37027.013224
0.194291   33968.417933   37134.462723   37141.457992
0.198291   34878.556235   37626.978914   37177.210229
0.202291   35927.865171   35642.704152   37138.249296
0.206291   36936.544344   35488.701600   37031.684404
0.210291   37671.045770   36732.951621   36861.703761
0.214291   37902.327246   38408.355759   36626.115209
0.218291   37497.711153   37703.785030   36316.320824
0.222291   36512.227404   37465.360508   35920.338747
0.226291   35226.026718   32835.429898   35427.532446
0.230291   34093.227199   37558.215581   34833.285631
0.234291   33608.078548   30734.674423   34142.032591
0.238291   34077.081294   34408.981855   33367.698305
0.242291   35123.844658   35386.942314   32531.476427
0.246841   34148.215121   34397.373415   31535.794714
$$


$TABLE: Z scores and completeness:
$GRAPHS
:Data sanity and completeness check 
:A:1,2,3:
$$
1/resol^2   Z_score   Completeness   $$ 
$$
0.010291   0.170280   0.784615
0.014291   1.153337   0.950617
0.018291   1.878039   0.989362
0.022291   1.979913   0.989474
0.026291   1.209403   0.990826
0.030291   2.224799   1.000000
0.034291   0.129937   0.991597
0.038291   0.775620   0.975610
0.042291   0.739272   1.000000
0.046291   1.141931   0.965986
0.050291   0.627402   0.972789
0.054291   0.990219   1.000000
0.058291   0.851566   0.993590
0.062291   0.309147   0.964497
0.066291   0.692212   0.979452
0.070291   0.702867   0.994220
0.074291   0.005034   0.988304
0.078291   0.584270   0.989071
0.082291   2.160853   0.994444
0.086291   0.517234   0.988024
0.090291   1.240041   0.990099
0.094291   1.723036   1.000000
0.098291   1.126140   0.994898
0.102291   1.328955   0.994975
0.106291   0.552420   0.995434
0.110291   0.442383   1.000000
0.114291   0.520767   1.000000
0.118291   1.906709   0.990338
0.122291   1.433283   1.000000
0.126291   2.719174   1.000000
0.130291   0.365829   1.000000
0.134291   0.231340   0.995708
0.138291   2.011878   1.000000
0.142291   1.031530   0.995745
0.146291   1.174919   1.000000
0.150291   1.685430   1.000000
0.154291   1.226896   0.996094
0.158291   1.594210   0.995690
0.162291   0.708721   1.000000
0.166291   0.664632   1.000000
0.170291   0.029349   1.000000
0.174291   2.440256   0.996169
0.178291   2.631060   0.991837
0.182291   0.533744   1.000000
0.186291   2.530037   0.996169
0.190291   2.113598   0.993151
0.194291   0.002932   1.000000
0.198291   0.191488   0.992674
0.202291   0.692537   1.000000
0.206291   0.670588   1.000000
0.210291   0.057707   0.996516
0.214291   0.777167   0.993289
0.218291   0.613548   1.000000
0.222291   0.660533   1.000000
0.226291   1.334900   1.000000
0.230291   1.176940   0.996429
0.234291   1.782104   0.992908
0.238291   0.521323   0.993730
0.242291   1.371325   0.990260
0.246841   1.062292   0.796209
$$


$TABLE: <I/sigma_I>:
$GRAPHS
:Signal to noise 
:N:1,2:
$$
1/resol^2   <I/sigma_I>;_Signal_to_noise   $$ 
$$
0.003116   39.980122
0.007116   43.438170
0.011116   45.532318
0.015116   46.271691
0.019116   46.891170
0.023116   44.532734
0.027116   42.983361
0.031116   44.553802
0.035116   47.030992
0.039116   46.126212
0.043116   47.263481
0.047116   47.087297
0.051116   45.935808
0.055116   40.874920
0.059116   40.571599
0.063116   40.006688
0.067116   39.536607
0.071116   38.956572
0.075116   39.211404
0.079116   38.891205
0.083116   36.879987
0.087116   31.141866
0.091116   30.842580
0.095116   29.441717
0.099116   29.536389
0.103116   28.509638
0.107116   28.316964
0.111116   25.845431
0.115116   25.391718
0.119116   23.366596
0.123116   23.515599
0.127116   21.801842
0.131116   22.701323
0.135116   21.578436
0.139116   20.475213
0.143116   20.542375
0.147116   20.508356
0.151116   19.158601
0.155116   18.606461
0.159116   18.219011
0.163116   18.062354
0.167116   16.696900
0.171116   17.010934
0.175116   15.343091
0.179116   14.174736
0.183116   14.753399
0.187116   12.977454
0.191116   13.060987
0.195116   15.186243
0.199116   13.837175
0.203116   14.280917
0.207116   12.436064
0.211116   13.090369
0.215116   14.609062
0.219116   14.005402
0.223116   12.076580
0.227116   11.425280
0.231116   10.714408
0.235116   9.530683
0.239116   9.250195
0.243116   7.046011
0.247116   5.585173
$$

##----------------------------------------------------##
##                   Twinning Analyses                ##
##----------------------------------------------------##



Using data between 10.00 to 2.06 Angstrom.

Determining possible twin laws.

The following twin laws have been found:

-------------------------------------------------------------------------------
| Type | Axis   | R metric (%) | delta (le Page) | delta (Lebedev) | Twin law |
-------------------------------------------------------------------------------
|   M  | 2-fold | 0.000        | 0.000           | 0.000           | h,-k,-l  |
-------------------------------------------------------------------------------
M:  Merohedral twin law
PM: Pseudomerohedral twin law

  1 merohedral twin operators found
  0 pseudo-merohedral twin operators found
In total,   1 twin operator were found


Number of centrics  : 877
Number of acentrics : 10821

 Largest Patterson peak with length larger than 15 Angstrom 

 Frac. coord.        :   0.355   -0.373    0.500
 Distance to origin  :  41.271
 Height (origin=100) :   5.776
 p_value(height)     :   7.629e-01

   The reported p_value has the following meaning: 
     The probability that a peak of the specified height 
     or larger is found in a Patterson function of a 
     macro molecule that does not have any translational
     pseudo symmetry is equal to  7.629e-01 
     p_values smaller than 0.05 might indicate 
     weak translational pseudo symmetry, or the self vector of 
     a large anomalous scatterer such as Hg, whereas values 
     smaller than 1e-3 are a very strong indication for 
     the presence of translational pseudo symmetry.



Wilson ratio and moments 

Acentric reflections 
   <I^2>/<I>^2    :1.695   (untwinned: 2.000; perfect twin 1.500)
   <F>^2/<F^2>    :0.854   (untwinned: 0.785; perfect twin 0.885)
   <|E^2 - 1|>    :0.612   (untwinned: 0.736; perfect twin 0.541)


Centric reflections 
   <I^2>/<I>^2    :2.741   (untwinned: 3.000; perfect twin 2.000)
   <F>^2/<F^2>    :0.720   (untwinned: 0.637; perfect twin 0.785)
   <|E^2 - 1|>    :0.890   (untwinned: 0.968; perfect twin 0.736)



NZ test (0<=z<1) to detect twinning and possible translational NCS


-----------------------------------------------
|  Z  | Nac_obs | Nac_theo | Nc_obs | Nc_theo |
-----------------------------------------------
| 0.0 |   0.000 |    0.000 |  0.000 |   0.000 |
| 0.1 |   0.027 |    0.095 |  0.119 |   0.248 |
| 0.2 |   0.086 |    0.181 |  0.241 |   0.345 |
| 0.3 |   0.159 |    0.259 |  0.325 |   0.419 |
| 0.4 |   0.235 |    0.330 |  0.396 |   0.474 |
| 0.5 |   0.313 |    0.394 |  0.465 |   0.520 |
| 0.6 |   0.387 |    0.451 |  0.515 |   0.561 |
| 0.7 |   0.457 |    0.503 |  0.562 |   0.597 |
| 0.8 |   0.521 |    0.551 |  0.603 |   0.629 |
| 0.9 |   0.578 |    0.593 |  0.641 |   0.657 |
| 1.0 |   0.625 |    0.632 |  0.667 |   0.683 |
-----------------------------------------------
| Maximum deviation acentric      :  0.101    |
| Maximum deviation centric       :  0.130    |
|                                             |
| <NZ(obs)-NZ(twinned)>_acentric  : -0.055    |
| <NZ(obs)-NZ(twinned)>_centric   : -0.055    |
-----------------------------------------------


 L test for acentric data

 using difference vectors (dh,dk,dl) of the form: 
(2hp,2kp,2lp)
  where hp, kp, and lp are random signed integers such that 
  2 <= |dh| + |dk| + |dl| <= 8 

  Mean |L|   :0.407  (untwinned: 0.500; perfect twin: 0.375)
  Mean  L^2  :0.232  (untwinned: 0.333; perfect twin: 0.200)

  The distribution of |L| values indicates a twin fraction of
  0.19. Note that this estimate is not as reliable as obtained
  via a Britton plot or H-test if twin laws are available. 




$TABLE: NZ test:
$GRAPHS
:NZ test, acentric and centric data 
:A:1,2,3,4,5:
$$
z   Acentric_observed   Acentric_untwinned   Centric_observed   Centric_untwinned   $$ 
$$
0.000000   0.000000   0.000000   0.000000   0.000000
0.100000   0.026985   0.095200   0.118586   0.248100
0.200000   0.085574   0.181300   0.240593   0.345300
0.300000   0.158581   0.259200   0.324971   0.418700
0.400000   0.235468   0.329700   0.395667   0.473800
0.500000   0.312540   0.393500   0.465222   0.520500
0.600000   0.386748   0.451200   0.515393   0.561400
0.700000   0.456612   0.503400   0.562144   0.597200
0.800000   0.521209   0.550700   0.603193   0.628900
0.900000   0.577765   0.593400   0.640821   0.657200
1.000000   0.625173   0.632100   0.667047   0.683300
$$


$TABLE: L test,acentric data:
$GRAPHS
:L test, acentric data 
:A:1,2,3,4:
$$
|l|   Observed   Acentric_theory   Acentric_theory,_perfect_twin   $$ 
$$
0.000000   0.004958   0.000000   0.000000
0.020000   0.028996   0.020000   0.029996
0.040000   0.054112   0.040000   0.059968
0.060000   0.082031   0.060000   0.089892
0.080000   0.109734   0.080000   0.119744
0.100000   0.136467   0.100000   0.149500
0.120000   0.160397   0.120000   0.179136
0.140000   0.187345   0.140000   0.208628
0.160000   0.213862   0.160000   0.237952
0.180000   0.238331   0.180000   0.267084
0.200000   0.266897   0.200000   0.296000
0.220000   0.294276   0.220000   0.324676
0.240000   0.321225   0.240000   0.353088
0.260000   0.345801   0.260000   0.381212
0.280000   0.370271   0.280000   0.409024
0.300000   0.394416   0.300000   0.436500
0.320000   0.420610   0.320000   0.463616
0.340000   0.446157   0.340000   0.490348
0.360000   0.470950   0.360000   0.516672
0.380000   0.496497   0.380000   0.542564
0.400000   0.519133   0.400000   0.568000
0.420000   0.542740   0.420000   0.592956
0.440000   0.567101   0.440000   0.617408
0.460000   0.591032   0.460000   0.641332
0.480000   0.612914   0.480000   0.664704
0.500000   0.636089   0.500000   0.687500
0.520000   0.659588   0.520000   0.709696
0.540000   0.678129   0.540000   0.731268
0.560000   0.697747   0.560000   0.752192
0.580000   0.717150   0.580000   0.772444
0.600000   0.738924   0.600000   0.792000
0.620000   0.758758   0.620000   0.810836
0.640000   0.774927   0.640000   0.828928
0.660000   0.792282   0.660000   0.846252
0.680000   0.812547   0.680000   0.862784
0.700000   0.834106   0.700000   0.878500
0.720000   0.850490   0.720000   0.893376
0.740000   0.869570   0.740000   0.907388
0.760000   0.883799   0.760000   0.920512
0.780000   0.899429   0.780000   0.932724
0.800000   0.913442   0.800000   0.944000
0.820000   0.928533   0.820000   0.954316
0.840000   0.943408   0.840000   0.963648
0.860000   0.955589   0.860000   0.971972
0.880000   0.966692   0.880000   0.979264
0.900000   0.975962   0.900000   0.985500
0.920000   0.983292   0.920000   0.990656
0.940000   0.990622   0.940000   0.994708
0.960000   0.995042   0.960000   0.997632
0.980000   0.998383   0.980000   0.999404
$$

---------------------------------------------
 Analysing possible twin law :  h,-k,-l
---------------------------------------------


Results of the H-test on acentric data: 

 (Only 50.0% of the strongest twin pairs were used)

mean |H| : 0.267   (0.50: untwinned; 0.0: 50% twinned)
mean H^2 : 0.103   (0.33: untwinned; 0.0: 50% twinned)
Estimation of twin fraction via mean |H|: 0.233
Estimation of twin fraction via cum. dist. of H: 0.227



Britton analyses

  Extrapolation performed on  0.18 < alpha < 0.495 
  Estimated twin fraction: 0.200
  Correlation: 0.9962

R vs R statistic:
  R_abs_twin = <|I1-I2|>/<|I1+I2|>
  Lebedev, Vagin, Murshudov. Acta Cryst. (2006). D62, 83-95

   R_abs_twin observed data   : 0.286

  R_sq_twin = <(I1-I2)^2>/<(I1+I2)^2>
   R_sq_twin observed data    : 0.103
  No calculated data available.
  R_twin for calculated data not determined.


Maximum Likelihood twin fraction determination
    Zwart, Read, Grosse-Kunstleve & Adams, to be published.


   The estimated twin fraction is equal to 0.204



$TABLE: Britton plot for twin law h,-k,-l:
$GRAPHS
:percentage negatives 
:A:1,2,3:
$$
alpha   percentage_negatives   fit   $$ 
$$
0.000000   0.000000   0.000000
0.009901   0.000000   0.000000
0.019802   0.000000   0.000000
0.029703   0.000000   0.000000
0.039604   0.000000   0.000000
0.049505   0.000000   0.000000
0.059406   0.000000   0.000000
0.069307   0.000000   0.000000
0.079208   0.000000   0.000000
0.089109   0.000185   0.000000
0.099010   0.000463   0.000000
0.108911   0.000463   0.000000
0.118812   0.000833   0.000000
0.128713   0.000926   0.000000
0.138614   0.001018   0.000000
0.148515   0.001574   0.000000
0.158416   0.002314   0.000000
0.168317   0.003518   0.000000
0.178218   0.004814   0.000000
0.188119   0.007684   0.000000
0.198020   0.012775   0.000000
0.207921   0.018423   0.011311
0.217822   0.025088   0.026268
0.227723   0.036845   0.041226
0.237624   0.048880   0.056183
0.247525   0.060637   0.071141
0.257426   0.072672   0.086098
0.267327   0.087669   0.101056
0.277228   0.102481   0.116013
0.287129   0.115719   0.130971
0.297030   0.130717   0.145928
0.306931   0.146825   0.160886
0.316832   0.164599   0.175843
0.326733   0.181726   0.190801
0.336634   0.199315   0.205758
0.346535   0.217089   0.220715
0.356436   0.232087   0.235673
0.366337   0.247732   0.250630
0.376238   0.264858   0.265588
0.386139   0.281892   0.280545
0.396040   0.299111   0.295503
0.405941   0.315219   0.310460
0.415842   0.330772   0.325418
0.425743   0.345954   0.340375
0.435644   0.360489   0.355333
0.445545   0.375301   0.370290
0.455446   0.388909   0.385248
0.465347   0.405388   0.400205
0.475248   0.422700   0.415163
0.485149   0.440567   0.430120
$$


$TABLE: H test for possible twin law h,-k,-l:
$GRAPHS
:H test for Acentric data 
:A:1,2,3:
$$
H   Observed_S(H)   Fitted_S(H)   $$ 
$$
0.000000   0.064803   0.000000
0.020000   0.094612   0.036600
0.040000   0.132383   0.073199
0.060000   0.164969   0.109799
0.080000   0.203481   0.146399
0.100000   0.236808   0.182998
0.120000   0.267543   0.219598
0.140000   0.299759   0.256197
0.160000   0.323829   0.292797
0.180000   0.356415   0.329397
0.200000   0.389372   0.365996
0.220000   0.424181   0.402596
0.240000   0.456767   0.439196
0.260000   0.493057   0.475795
0.280000   0.530457   0.512395
0.300000   0.565266   0.548995
0.320000   0.602296   0.585594
0.340000   0.632290   0.622194
0.360000   0.667839   0.658793
0.380000   0.708943   0.695393
0.400000   0.740418   0.731993
0.420000   0.769672   0.768592
0.440000   0.795964   0.805192
0.460000   0.823366   0.841792
0.480000   0.857064   0.878391
0.500000   0.880763   0.914991
0.520000   0.904092   0.951590
0.540000   0.924458   0.988190
0.560000   0.951861   1.000000
0.580000   0.970746   1.000000
0.600000   0.980744   1.000000
0.620000   0.990002   1.000000
0.640000   0.995927   1.000000
0.660000   0.998148   1.000000
0.680000   0.999259   1.000000
0.700000   0.999630   1.000000
0.720000   0.999630   1.000000
0.740000   0.999630   1.000000
0.760000   1.000000   1.000000
0.780000   1.000000   1.000000
0.800000   1.000000   1.000000
0.820000   1.000000   1.000000
0.840000   1.000000   1.000000
0.860000   1.000000   1.000000
0.880000   1.000000   1.000000
0.900000   1.000000   1.000000
0.920000   1.000000   1.000000
0.940000   1.000000   1.000000
0.960000   1.000000   1.000000
0.980000   1.000000   1.000000
$$


$TABLE: Likelihood based twin fraction estimation for possible twin law h,-k,-l:
$GRAPHS
:Likelihood based twin fraction estimate 
:A:1,2:
$$
alpha   NLL_(acentric_data)   $$ 
$$
0.021739   21096.787205
0.043478   20601.003576
0.065217   20081.199221
0.086957   19539.259430
0.108696   18973.200772
0.130435   18384.984419
0.152174   17785.633772
0.173913   17214.808548
0.195652   16826.958052
0.217391   17167.862655
0.239130   19991.133768
0.260870   28618.042986
0.282609   45755.817655
0.304348   69403.554438
0.326087   101966.619711
0.347826   140358.993897
0.369565   184324.570511
0.391304   229975.931849
0.413043   278281.458194
0.434783   328009.127298
0.456522   384028.198951
0.478261   434226.735780
$$


Exploring higher metric symmetry

The point group of data as dictated by the space group is P 4
  the point group in the niggli setting is P 4 (c,a,b)
The point group of the lattice is P 4 2 2 (c,a,b)
A summary of R values for various possible point groups follow.

--------------------------------------------------------------------------------------
| Point group     | mean R_used | max R_used | mean R_unused | min R_unused | choice |
--------------------------------------------------------------------------------------
| P 4 2 2 (c,a,b) | 0.286       | 0.286      | None          | None         |        |
| P 4 (c,a,b)     | None        | None       | 0.286         | 0.286        | <---   |
--------------------------------------------------------------------------------------

R_used: mean and maximum R value for symmetry operators *used* in this point group
R_unused: mean and minimum R value for symmetry operators *not used* in this point group
 The likely point group of the data is:  P 4 (c,a,b)

Possible space groups in this point groups are:
   Unit cell: (71.651, 71.651, 37.103, 90, 90, 90)
   Space group: P 41 (No. 76)

   Unit cell: (71.651, 71.651, 37.103, 90, 90, 90)
   Space group: P 43 (No. 78)

Note that this analysis does not take into account the effects of twinning.
If the data are (almost) perfectly twinned, the symmetry will appear to be
higher than it actually is.





-------------------------------------------------------------------------------
Twinning and intensity statistics summary (acentric data):

Statistics independent of twin laws
  - <I^2>/<I>^2 : 1.695
  - <F>^2/<F^2> : 0.854
  - <|E^2-1|>   : 0.612
  - <|L|>, <L^2>: 0.407, 0.232
       Multivariate Z score L-test: 7.603 
       The multivariate Z score is a quality measure of the given
       spread in intensities. Good to reasonable data are expected
       to have a Z score lower than 3.5. 
       Large values can indicate twinning, but small values do not
       necessarily exclude it. 


Statistics depending on twin laws
-----------------------------------------------------------------
| Operator | type | R obs. | Britton alpha | H alpha | ML alpha |
-----------------------------------------------------------------
| h,-k,-l  |   M  | 0.286  | 0.200         | 0.227   | 0.204    |
-----------------------------------------------------------------

Patterson analyses
  - Largest peak height   : 5.776
   (corresponding p value : 0.76286)


The largest off-origin peak in the Patterson function is 5.78% of the 
height of the origin peak. No significant pseudotranslation is detected.

The results of the L-test indicate that the intensity statistics
are significantly different than is expected from good to reasonable,
untwinned data.
As there are twin laws possible given the crystal symmetry, twinning could
be the reason for the departure of the intensity statistics from normality.
It might be worthwhile carrying out refinement with a twin specific target function.

-------------------------------------------------------------------------------

-------------- next part --------------
refine1: twin, 25 individual sites ml, 25 individual adp, 10 cycles
r_work = 0.1840 r_free = 0.2188 bonds = 0.009 angles = 1.119

refine1-NT: no twin ==
r_work = 0.2327 r_free = 0.2873 bonds = 0.008 angles = 1.066

refine2: twin, sim ann 4k first, 25 individual sites ml, 25 individual adp, 10 cycles
r_work = 0.1846 r_free = 0.2207 bonds = 0.006 angles = 0.841

refine3: twin, ordered water, 25 individual sites ml, 25 individual adp, 10 cycles
r_work = 0.1555 r_free = 0.1907 bonds = 0.005 angles = 0.848

refine3-NT: no twin ==
r_work = 0.1985 r_free = 0.2558 bonds = 0.006 angles = 0.942

refine4: twin, tls(A+B), 25 individual sites ml, 25 individual adp, 5 cycles
r_work = 0.1698 r_free = 0.2066 bonds = 0.009 angles = 1.086

refine4-NT: no twin ==
r_work = 0.2209 r_free = 0.2787 bonds = 0.008 angles = 1.073

refine5: twin, tls(A+B), ordered water, 25 individual sites ml, 25 individual adp, 5 cycles 
r_work = 0.1428 r_free = 0.1770 bonds = 0.006 angles = 0.909

refine5-NT: no twin ==
r_work = 0.1922 r_free = 0.2435 bonds = 0.005 angles = 0.872



SUMMARY:
			No twin (Rw/Rf)			Twinned (Rw/Rf)

refine1			0.2327 / 0.2873			0.1840 / 0.2188
(-TLS-H2O)

refine2			--------------			0.1846 / 0.2207
(-TLS-H2O+1st SA 4k)

refine3			0.1985 / 0.2558			0.1555 / 0.1907	***	
(-TLS+H2O)

refine4			0.2209 / 0.2787			0.1698 / 0.2066
(+TLS-H2O)

refine5			0.1922 / 0.2435	 ***		0.1428 / 0.1770
(+TLS+H2O)





More information about the phenixbb mailing list