Hi Alex,

HKL2000 removes the systematic absences according to the p2221 spacegroup. 
Xtriage doesn't see them and can't do anything with them. For this reason, the Wilson statistics likelihood score used to determine the spacegroup for P222 and P2221 are exactly the same. 

Peter


On 23 January 2016 at 09:11, Alex Lee <alexlee198609@gmail.com> wrote:
Dear All,

I scaled a dataset of SG P2221 in HKL2000 and got systematic absence results as below, it seems clearly HKL2000 showed the data had systematic absence violations, but when I used the .sca file from HKL2000 as input in Xtriage, the result did not show any systematic violations. Which result should I rely on?

HKL200 Results:
 Summary of reflections intensities and R-factors by shells
     R linear = SUM ( ABS(I - <I>)) / SUM (I)
     R square = SUM ( (I - <I>) ** 2) / SUM (I ** 2)
     Chi**2   = SUM ( (I - <I>) ** 2) / (Error ** 2 * N / (N-1) ) )
     In all sums single measurements are excluded

 Shell Lower Upper Average      Average     Norm. Linear Square
 limit    Angstrom       I   error   stat. Chi**2  R-fac  R-fac  Rmeas   Rpim  CC1/2    CC*
      50.00   5.60  2819.0   103.7    44.8  0.607  0.033  0.040  0.037  0.017  0.998  0.999
       5.60   4.45  1801.5    63.8    28.1  0.914  0.043  0.050  0.048  0.022  0.997  0.999
       4.45   3.88  1435.3    52.6    25.5  0.980  0.048  0.051  0.054  0.024  0.997  0.999
       3.88   3.53   738.7    31.8    20.5  1.117  0.068  0.067  0.075  0.032  0.996  0.999
       3.53   3.28   489.7    26.5    20.1  1.134  0.092  0.080  0.102  0.043  0.996  0.999
       3.28   3.08   236.3    19.8    17.4  0.975  0.147  0.108  0.162  0.069  0.993  0.998
       3.08   2.93    93.4    16.4    16.0  0.850  0.296  0.277  0.327  0.138  0.947  0.986
       2.93   2.80    62.9    16.3    16.0  0.737  0.422  0.384  0.467  0.197  0.921  0.979
       2.80   2.69    42.6    16.7    16.5  0.677  0.622  0.515  0.688  0.291  0.879  0.967
       2.69   2.60    29.3    20.0    19.9  0.680  0.924  0.842  0.000  0.440  0.659  0.891
  All reflections    798.1    37.4    22.6  0.873  0.064  0.050  0.068  0.031

     Intensities of systematic absences
      h   k   l  Intensity     Sigma   I/Sigma

      0   0   3      -0.4       1.3      -0.3
      0   0   5      10.4       3.0       3.5
      0   0   7      11.4       3.9       2.9
      0   0   9       8.7       4.3       2.0
      0   0  11      18.6       6.4       2.9
      0   0  13     182.9      17.1      10.7
      0   0  15       3.0       7.8       0.4
      0   0  17      11.9       9.2       1.3
      0   0  19      30.0      14.3       2.1
      0   0  21       7.4      11.1       0.7
      0   0  23      54.2      15.6       3.5
      0   0  25      43.1      16.1       2.7
      0   0  27      12.5      18.9       0.7
      0   0  29     -16.6      20.9      -0.8
      0   0  31      31.0      25.4       1.2
      0   0  33       3.4      29.2       0.1
      0   0  35     -24.2      32.0      -0.8
      0   0  37      50.9      42.5       1.2
      0   0  39     -53.3      66.4      -0.8
      0   0  41      65.8      50.6       1.3
      0   0  43     -24.3      46.8      -0.5
      0   0  45      -6.1      48.3      -0.1
      0   0  47     -14.8      45.8      -0.3
      0   0  49       1.1      53.5       0.0
      0   0  51      -7.9      64.2      -0.1






Phenix Xtriage Results:

                 ----------Space group identification----------

Analyses of the absences table indicates a number of likely space group
candidates, which are listed below. For each space group, the number of
systematic absence violations are listed under the '+++' column. The number of
non-absence violations (weak reflections) are listed under '---'. The last
column is a likelihood based score for the particular space group.  Note that
enantiomorphic spacegroups will have equal scores. Also, if absences were
removed while processing the data, they will be regarded as missing
information, rather then as enforcing that absence in the space group choices.

  -------------------------------------------------------------------------------------
  | space group | #  absent | <Z>_absent | <Z/sigZ>_absent | +++  | --- | score       |
  -------------------------------------------------------------------------------------
  | P 2 2 2     | 0         |     0.00   |     0.00        |  0   |  4  |  0.000e+00  |
  | P 2 2 21    | 0         |     0.00   |     0.00        |  0   |  4  |  0.000e+00  |
  | P 2 21 2    | 5         |     3.07   |    16.77        |  5   |  4  |  1.038e+01  |
  | P 2 21 21   | 5         |     3.07   |    16.77        |  5   |  4  |  1.038e+01  |
  | P 21 2 2    | 5         |     1.89   |    15.21        |  5   |  4  |  1.250e+01  |
  | P 21 2 21   | 5         |     1.89   |    15.21        |  5   |  4  |  1.250e+01  |
  | P 21 21 2   | 10        |     2.48   |    15.99        |  10  |  4  |  2.288e+01  |
  | P 21 21 21  | 10        |     2.48   |    15.99        |  10  |  4  |  2.288e+01  |
  -------------------------------------------------------------------------------------

           ----------List of individual systematic absences----------

 Note: this analysis uses the original input data rather than the filtered data
 used for twinning detection; therefore, the results shown here may include
 more reflections than shown above.

P 2 2 2: no systematic absences possible
P 2 2 21 (input space group): no absences found
P 21 2 2
  (   5,    0,    0): i/sigi =   21.0
  (   7,    0,    0): i/sigi =    4.8
  (   9,    0,    0): i/sigi =   14.3
  (  11,    0,    0): i/sigi =   15.2
  (  13,    0,    0): i/sigi =   18.3
  (  15,    0,    0): i/sigi =   12.7
  (  17,    0,    0): i/sigi =    4.1
P 2 21 2
  (   0,    3,    0): i/sigi =   21.3
  (   0,    5,    0): i/sigi =   21.4
  (   0,    7,    0): i/sigi =   20.7
  (   0,    9,    0): i/sigi =   21.4
  (   0,   11,    0): i/sigi =   20.7
  (   0,   13,    0): i/sigi =   14.5
  (   0,   17,    0): i/sigi =   10.4
  (   0,   21,    0): i/sigi =   14.4
  (   0,   23,    0): i/sigi =    0.8
  (   0,   25,    0): i/sigi =    2.3
  (   0,   27,    0): i/sigi =    2.0
P 21 21 2
  (   0,    3,    0): i/sigi =   21.3
  (   0,    5,    0): i/sigi =   21.4
  (   0,    7,    0): i/sigi =   20.7
  (   0,    9,    0): i/sigi =   21.4
  (   0,   11,    0): i/sigi =   20.7
  (   0,   13,    0): i/sigi =   14.5
  (   0,   17,    0): i/sigi =   10.4
  (   0,   21,    0): i/sigi =   14.4
  (   0,   23,    0): i/sigi =    0.8
  (   0,   25,    0): i/sigi =    2.3
  (   0,   27,    0): i/sigi =    2.0
  (   5,    0,    0): i/sigi =   21.0
  (   7,    0,    0): i/sigi =    4.8
  (   9,    0,    0): i/sigi =   14.3
  (  11,    0,    0): i/sigi =   15.2
  (  13,    0,    0): i/sigi =   18.3
  (  15,    0,    0): i/sigi =   12.7
  (  17,    0,    0): i/sigi =    4.1
P 2 21 21
  (   0,    3,    0): i/sigi =   21.3
  (   0,    5,    0): i/sigi =   21.4
  (   0,    7,    0): i/sigi =   20.7
  (   0,    9,    0): i/sigi =   21.4
  (   0,   11,    0): i/sigi =   20.7
  (   0,   13,    0): i/sigi =   14.5
  (   0,   17,    0): i/sigi =   10.4
  (   0,   21,    0): i/sigi =   14.4
  (   0,   23,    0): i/sigi =    0.8
  (   0,   25,    0): i/sigi =    2.3
  (   0,   27,    0): i/sigi =    2.0
P 21 2 21
  (   5,    0,    0): i/sigi =   21.0
  (   7,    0,    0): i/sigi =    4.8
  (   9,    0,    0): i/sigi =   14.3
  (  11,    0,    0): i/sigi =   15.2
  (  13,    0,    0): i/sigi =   18.3
  (  15,    0,    0): i/sigi =   12.7
  (  17,    0,    0): i/sigi =    4.1
P 21 21 21
  (   0,    3,    0): i/sigi =   21.3
  (   0,    5,    0): i/sigi =   21.4
  (   0,    7,    0): i/sigi =   20.7
  (   0,    9,    0): i/sigi =   21.4
  (   0,   11,    0): i/sigi =   20.7
  (   0,   13,    0): i/sigi =   14.5
  (   0,   17,    0): i/sigi =   10.4
  (   0,   21,    0): i/sigi =   14.4
  (   0,   23,    0): i/sigi =    0.8
  (   0,   25,    0): i/sigi =    2.3
  (   0,   27,    0): i/sigi =    2.0
  (   5,    0,    0): i/sigi =   21.0
  (   7,    0,    0): i/sigi =    4.8
  (   9,    0,    0): i/sigi =   14.3
  (  11,    0,    0): i/sigi =   15.2
  (  13,    0,    0): i/sigi =   18.3
  (  15,    0,    0): i/sigi =   12.7
  (  17,    0,    0): i/sigi =    4.1

Thanks ahead

_______________________________________________
phenixbb mailing list
phenixbb@phenix-online.org
http://phenix-online.org/mailman/listinfo/phenixbb
Unsubscribe: phenixbb-leave@phenix-online.org



--
-----------------------------------------------------------------
P.H. Zwart
Staff Scientist
Berkeley Center for Structural Biology, Science lead
Lawrence Berkeley National Laboratories
1 Cyclotron Road, Berkeley, CA-94703, USA
Cell: 510 289 9246
SASTBX:  http://sastbx.als.lbl.gov
-----------------------------------------------------------------