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PHENIX News

New releases

A new tool for automated partitioning a model
into TLS groups, phenix.find tls_ groups,
is now available. This tool is available in the
GUI and command-line interfaces and can
take advantage of additional available CPU to
generate the atom selection for a refinement
run. The automatically defined TLS groups
can be readily visualised and edited in the
GUI This tool and all others mentioned here
are available in PHENIX version 1.7.

Visualisation of mutil-criteria kinemage
graphics is now available in PHENIX and is
discussed in the short communications on
page 6.

Generation of ensembles for Molecular
Replacement (MR) is the goal of new release
called phenix.ensembler. Another new
release integrates MR and Rosetta in PHENIX.
For more details, see the short
communications for phenix.ensembler on
page 8 and phenix.mr_ rosetta on page 10.

New features
Reference model restraints
Reference model restraints are used to steer

refinement in cases where the working data
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set is low resolution, but there is a known
related structure solved at higher resolution.
The higher resolution reference model is used
to generate a set of dihedral restraints that
are applied to each matching dihedral in the
working model. Sequence alignment is
handled automatically in cases of sequence
dissimilarity, including handling for deletions
and insertions. Alternatively, selections may
be used to hand-specify the desired reference
group in a parameter file. To use (also
available in GUI) add the following to the
input.

main.reference_model_ restraints=True
reference model.file=my reference.pdb

To specify reference group(s),

refinement.reference model.reference_ group

{
reference = chain A and resseq 130:134
selection = chain B and resseq 120:124

}
For a full list of reference model options,

please see the phenix.refine documentation.

Augmented base-pairing restraints for RNA
RNA base-pairing restraints have been

augmented to include many non-Watson-
Crick pairings, including all 28 Saenger types.
Saenger nomenclature is now used by default
to specify applicable base-pairs. Base-pairs
are determined automatically from the input
model, but may also be specified by hand in a
parameter file. To specify a base-pair by type
in a parameter file:

nucleic_acids {
base pair {

basel = "chain \"A\" and resseq 54"
base2 = "chain \"A\" and resseq 72"
saenger_ class = "XIX"

}
}
For a full list of secondary structure options,

please see the on-line documentation for

phenix.refine.

Crystallographic meetings and
workshops

20™ West Coast Protein Crystallography Workshop,
20-23 March, 2011

The bi-annual WCPCW is being held at a new
location, Monterey Plaza Hotel in Monterey,
CA on the 20™ to the 23rd of March. PHENIX
developers will be in attendance.

RapiData, 3-8 April, 2011
RapiData, the annual data collection and
structure-solving course is being held from
the 3rd to the 8t of April. PHENIX developers
will be in attendance.

International Conference on Structural Genomics
May 10-14, 2011

The International Structural Genomics
Organisation (ISGO) is holding a conference in
Toronto, Canada from the 10th to the 14th of
May. The “PHENIX Crystallography Software
Workshop” is an all day event on the first day.

American Crystallographic Association, 28 May -
2 June, 2011

A workshop, entitled “Introduction to PHENIX
for beginning to advanced crystallographers”
is planned for the 2011 Meeting of the
American Crystallographic Association in New
Orleans, Louisiana. The workshop is being
held on the 28t May with further information
available at www.amercrystalassn.org.

XXIl Congress and General Assemblyof the
International Union of Crystallography (IUCr), 22-30
August 2011

The 22nd Congress and General Assembly of
the IUCr will be held in Madrid, Spain on the
22nd to the 30t of August.

PHENIX User’s Workshop, 17 March, 2011

A PHENIX user’s workshop is being planned in
Berkeley, California on the 17t of March for
local area students, postdocs and other
interested parties. Please contact Nat Echols
at NEchols@lbl.gov for further information.
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Expert advice

Fitting Tips

Vincent Chen, Christopher Williams and Jane
Richardson, Duke University

Now that model building is highly automated,
for example in PHENIX, crystallographers get
much less experience with the fun of fitting
good maps and perhaps could use tips about
what to look for in the difficult cases where
the automated methods don’t suffice
requiring that they do it themselves. In this
series, we will try to pass along our own hard-
earned rules of thumb. Most of these are what
we call "systematic errors”, because they
happen repeatedly in a similar pattern caused
by a misleading appearance in the electron
density or a misleading assumption about
what should be true in the model. That means
they occur fairly often in certain
circumstances, but fortunately there is usually
arecipe for what needs to be done to fix them.

Our initial fitting tip is one especially relevant
at low resolution (around 3A and worse), first
noticed recently when helping to rebuild
ribosome structures (in collaboration with
Jamie Cate). We encountered places where an
extended [ strand, instead of the wusual
alternation of peptide direction, showed three
carbonyls in a row that all pointed the same
general direction. Figure 1 shows an example
of a three-stranded antiparallel 3 sheet with
two such problems (left panel, with the CO
triples labeled in red, the all-atom clashes as
pink spikes and Ramachandran outliers as
green lines). This prevents good H-bonding,
produces clashes, often places a sidechain on
the wrong side of the sheet and, usually, leads
to Ramachandran outliers.

The misleading feature that causes this
mistake is that in the 2.5 to 3A resolution
range the carbonyls start to lose definition in
the map and a strand becomes a rather
smooth, round tube. Therefore the electron
density no longer provides the clues to
peptide orientation that both people and

DB
Figure 1: Model on left has a misfit  strand

containing three consecutive parallel carbonyls
and the corrected model on the right.

software rely on at better resolution.

The fixing procedure begins with a near-180°
flip of the peptide containing the central of the
three  COs, followed by  geometry
regularization, refitting of the affected
sidechain and optimization of backbone (-
sheet H-bonding. The result, as in the right
panel of figure 1, should correct the clashes,
Ramachandran outliers, improve H-bonding
(pillows of green dots) and fit the density at
least a bit better.

An alpha-test version of an automated
diagnostic for these “three CO” misfit cases
identified hundreds of examples in low-
resolution PDB structures. See and try out the
illustrated case in PDB file 311N (or 3iln in
lower case for clarity) chain G (L6), residues
95-113. However, note that in future
structures for the E coli 70S ribosome many
such issues will have been corrected.

FAQ

There are two methods to add links between atoms
in PHENIX. Which one should | use?

Both methods have their place. Either can be
used in most situations, however, one is
designed for adding one or two links with
little setup while the other is more extensible
to larger numbers of links and also reusable in
other protein models.
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refinement.geometry restraints.edits {

zn_selection = chain X and resname ZN and resid 200 and name ZN
hisll7_selection = chain X and resname HIS and resid 117 and name NE2
aspl30_selection = chain X and resname ASP and resid 130 and name OD1

bond {
action = *add
atom_selection_1
atom_selection_2
distance_ideal =

$zn_selection
$hisll7_selection
.1

NI

sigma = 0.02
slack = None
}
bond {
action = *add

atom_selection_1
atom_selection_2
distance_ideal =
sigma = 0.02
slack = None

$zn_selection
$aspl30_selection
.1

NI

}

angle {
action = *add
atom_selection_1
atom_selection_2 $zn_selection
atom_selection_3 $aspl30_selection
angle_ideal = 109.47
sigma = 5

$hisll7_selection

}
}

Figure 2: Example of the “edits” syntax for linking
atoms with bonds and angles in phenix.refine.

The simplest method is the “edits” scheme
specific to PHENIX. The format uses the phil
syntax (cctbx.sf.net/libtbx phil.html) that
drives the command interface for PHENIX.
The basic concept involved is selecting atoms
and performing an action. The selection
syntax is the same as the selection syntax in
other portions of PHENIX and is shown in
figure 2.

The first lines create selections of three atoms
that can be used in the subsequent actions.
Note that the selections must parse to a single
atom but can be either all the alternative
locations of an atom or a specific alternative
location. The use of variables such
$zn_selection reduces clutter and errors
in the bond and angle scopes but is not
required. The spelt-out selection can be used
inside the bond or angle entries but care
should be taken with multiple entries
containing the same atoms.

The most common action is adding a
geometric entity and is performed using the
*add syntax. The ideal value of the geometry
entities and the sigma value are needed by
the refinement. Additional values include a

data_link NGA-THR
#
loop_
_chem _link bond.link id
_chem_link bond.atom 1 comp_id
_chem_link bond.atom id_ 1
_chem_link bond.atom 2 comp_id
_chem_link bond.atom id_ 2
_chem_link bond.type
_chem_link bond.value dist
_chem_link bond.value_dist_esd
NGA-THR 1 Cl 2 OGl single
loop_
_chem link_angle.link id
_chem_link angle.atom_1 comp_id
_chem _link_ angle.atom id 1
_chem_link angle.atom_2_comp_id
_chem _link_ angle.atom id 2
_chem_link angle.atom 3_comp_id
_chem_link angle.atom id_3
_chem_link angle.value_angle
_chem_link angle.value_angle_esd
NGA-THR 1 Cl1 2 OGl 2 CB 108.700
NGA-THR 1 05 1 Cl 2 0Gl 112.300
#

Figure 3: Example of the cif 1ink syntax for linking
atoms with bonds and angles in phenix.refine.

1.439 0.020

3.000
3.000

slack value that enables a flat-bottomed
potential well and a symmetry operator for
linking symmetry-related atoms. The list of
geometric restraints that can be added in this
fashion currently includes bonds, angles,
dihedrals and planes.

The second technique is the standard link
mechanism from the Monomer Library
(www.ccp4.ac.uk/html/mon _lib.html). Two
files are required to perform the same
function as edits but this approach is more
efficient for defining many links.

The data link file defines the geometric
restraints involved in the linking between two
“residues”. In the example in figure 3, the
saccharide specified by the code NGA is
specified as bonding to the oxygen of a
threonine (THR). The first line of the file
specifies the id of the link. Subsequent lines
specify the bond between the C1 of the NGA
and the OG1 of THR along with an ideal value
and estimated standard deviation (ESD) or

Computational Crystallography Newsletter (2011). Volume 2, Part 1.



sigma value. Two angles are also
specified below the bonds.

The second file is used to specify }
the residues that are to be linked.
Figure 4 shows the syntax required
by phenix.refine to apply the
link, NGA-THR, to the two selected residues.
Note that the ordering of the selection is
important.

Using the latter method a library of the links
could be developed and then simply applied
to the desired residues in a refinement. This is
a powerful feature and the Monomer Library
contains a number of useful pre-defined links
such as saccharide linking to protein and

refinement.pdb_interpretation.apply cif link {
data_link
residue_selection_1
residue_selection_2

= NGA-THR
chain X and resname NGA and resid 900
chain X and resname THR and resid 42

Figure 4: Example of the cif 1link syntax for linking atoms with
onds and angles in phenix.refine.

glycosidic bonds that can be accessed using
the “apply cif 1link” demonstrated in
figure 4.

Currently, different modules in PHENIX use
one or the other technique to communicate
information. Metal coordination uses the edits
to addition restraints to phenix.refine.
eLBOW uses the cif link method to link
ligands to a protein residue.

Computational Crystallography Newsletter (2011). Volume 2, Part 1.



SHORT COMMUNICATIONS

Multi-criterion kinemage graphics in PHENIX
Jeffrey ]. Headd?, Vincent B. Chenc, Nathaniel Echols?, Nigel W. Moriarty?, David C. Richardsone, Jane S.

Richardsonc and Paul D. Adamsab

aLawrence Berkeley National Laboratory, Berkeley, CA 94720
bDepartment of Bioengineering, University of California at Berkeley, Berkeley, CA 94720
cDepartment of Biochemistry, Duke University Medical Center, Durham, NC 27710

Correspondence email: JJHeadd@LBL.Gov
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An important component of
crystallographic structure determination is
validation of model quality. The
MolProbity (Chen et al., 2010) web server
provides a variety of metrics to evaluate
model quality and presents the analysis in
both tabular and graphical forms. The
KiNG structure viewer (Chen et al, 2009)
used by MolProbity displays structural
analysis in the visual form of a multi-
criterion kinemage, allowing the user to
quickly identify both interesting structural
features and model-building errors with
criterion-specific graphical cues. PHENIX
has previously incorporated MolProbity
validation methods, such as rotamer
outliers and steric clashes, in tabular form
(Adams et al., 2010), but has not provided [
the same level of graphical validation
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available from MolProbity. To complement Cipping

tabular analysis, PHENIX now features
multi-criterion kinemage graphics. Multi-
criterion kinemages generated in PHENIX
contain the same visual validation graphics

Figure 1: Close-up within a sample multi-criterion kinemage
for ubiquitin (pdbID: 1UBQ). (A) Sidechain rotamer outliers are
shown in gold as seen here for Arg A 72 and Asp A 39. (B)
Significant steric overlaps (> 0.4A) are shown by hot pink
spikes. (C) Angle deviations greater that 40 are flagged, blue for
angles that are too small and red for angles that are too large.
(D) Bond-length deviations greater than 4o are flagged, blue for

as presented by MolProbity, which
includes graphics for rotamer and
Ramachandran outliers, steric clashes,

angle and bond-length deviations, Cf
deviations and ribose pucker outliers for
nucleic acids. Figure 1 depicts an example multi-
criterion kinemage displayed in KiNG for ubiquitin
(pdbID: 1UBQ). See figure 2 for a complete
depiction of all available graphical validation
metrics.

As discussed in the July 2009 issue of the
Computational Crystallography = Newsletter,
PHENIX now includes KiNG as a core component,
so displaying kinemage graphics is natively
available. When using the phenix.refine GUI,
a multi-criterion kinemage is generated by default.
At the completion of a refinement run, the
MolProbity > Summary tab will have a button
labeled “show validation in KiNG”, as seen in
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bonds that are too short and red for bonds too long.

figure 3. Clicking this button will launch KiNG and
load the multi-criterion kinemage for interactive
use. The kin file is also available in the refinement
project directory.

Multi-criterion kinemages are also available via
the command line tools. To generate a kinemage
on the command line, run:

phenix.kinemage lubqg.pdb

This command will automatically add hydrogens if
not present (crucial for correct contact analysis)
and generate a multi-criterion kinemage in a file
named lubg.kin. To specify the output file name
and/or location, run:
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phenix.kinemage lubg.pdb out file=/path/to/lubg multi.kin

Once generated, the multi-criterion kinemage Outlier Legend:
may be viewed in KiNG by running: M "

phenix.king lubg multi.kin //I \‘\\\\ Raal . P

ipi i ( H-bond, vdW ) A
Serendipitously, restraints generated for novel glash Cp

ligands, modified amino acids and nucleic acids
and other non-standard molecules with eLBOW
(Moriarty et al., 2009) can be used to augment rotamer

structure validation. The kinemage generation /\/
methods in PHENIX use these definitions for

both graphical rendering and model validation, DVQVQVQYD\ ribose
pucker "

providing more facile functionality over the bond

current state-of-the-art in MolProbity for novel ngle

molecular handling. Kinemage generation in \/ WFP@

the phenix.refine GUI handles custom

restraints incorporation automatically. For gjgure 2: Legend of all outlier symbols used in multi-

command line generation, a restraints file criterion kinemages generated by PHENIX. Taken from
(.cif) may be included by running: Chen et al., 2010.

phenix.kinemage lubqg.pdb cif=ligands.cif

The flexibility of the kinemage format and many -
display features of KNG provide great = A 2 &3l Mgm'}

opportunity ~ for  development  of  new o wnes T
crystallographic-specific validation graphics in e ——

PHENIX. KiNG is capable of displaying parallel T

coordinates, for example (Chen et al, 2009), I:g.;).#

which will be useful for displaying trends across e o o <os s s ot 950
all validation criteria for tracking model = aie™ o T TS
improvement throughout the building and - @@ wisinnic | <g—

refinement process. Development is ongoing and  singaens

future releases of PHENIX will feature expanded

validation techniques to aid in structure solution.
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phenix.ensembler: a tool for multiple superposition

Gabor Bunkoczi and Randy J. Read
Department of Haematology, University of Cambridge, CIMR, Wellcome Trust/MRC Building, Hills Road, CB2 0XY,
Cambridge, UK

Correspondence email: gb360@cam.ac.uk

In molecular replacement, a collection of superposed simple models ("ensemble" models) can
give superior signal over any of the individual components. For example, hen egg white
lysozyme can be solved with either mouse digestive lysozyme (2FBD, 40% identical) or apo
bovine a-lactalbumin (1F6R, 40% identical) with both of them yield similar quality solutions
(Table 1). However, when the two models are combined, solution quality (measured both in
terms of translation function Z-score or final log-likelihood gain) increases (Table 1).

Table 1. Comparison of model quality between a two-member ensemble and its components.

Model TFZ Refined LLG |
mouse digestive lysozyme 9.7 91.66
apo bovine a-lactalbumin 11.4 95.88
ensemble 12.6 146.49

In an ideal ensemble, individual components capture possible conformations for the flexible
parts of the structure, while emphasizing the rigid core. Therefore, to create an ensemble,
models have to be selected based on their conformational variability, while their rigid core has
to be identified and superposed.

phenix.ensembler was written to automate the creation of models as much as possible as well
as offer some help in deciding what models to include. It takes a series of PDB files as
arguments (potentially unedited models from the PDB as identified by a homology search) and
optional alignment files.

1. The program reads all PDB files and analyses all chains. All non-protein chains are discarded;
multiple copies of the same chain are retained.

2. Equivalent residue positions in protein chains are aligned using one of the following methods
(residue alignment):

a. ssm: uses the secondary-structure matching (Krissinel & Henrick, 2004) algorithm (default).

b. muscle: automatically create a multiple alignment using phenix.muscle (Edgar, 2004). Results
are possibly less accurate than those from ssm, but are applicable for any protein chains, even
those without any secondary structure.

c. alignments: reads alignments provided on the command line, thereby giving full control over
residue alignment.

d. resid: aligns residues with identical residue number and insertion code.

3. Equivalent atoms in residues are aligned based on atom name (atom alignment) and atoms
participating in the superposition are selected (default: Cq only).

4. Equivalent positions are then superposed using a multiple superposition algorithm. This gives
better results than a series of pair-wise superpositions if there are significant differences between
the structures. There are two algorithms implemented:

a. gapless (Diamond, 1992). This is a fast algorithm, but it can only use sites that are present in all
structures superposed and therefore may discard a significant number of sites when superposing
several protein chains with distant homology (default).

Computational Crystallography Newsletter (2011). 2, 8-9 8
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b. gapped (Wang & Snoeyink, 2008). This algorithm can take
alignment gaps into account in superposition and therefore
can make use of more sites, giving more precise results.

5. Superposition is then alternated with weighting until
convergence. Currently, there are two weighting schemes
implemented:

a. unit.This gives an unweighted superposition.

b. robust resistant. This assigns a weight to each
superposed position based on the root mean-square
deviation between all structures according to a robust-
resistant weight function (default). Tolerance of the
weighting can be controlled by the
weighting.robust_resistant.critical parameter, with lower
values down-weighting deviating positions more
progressively. This approach proved very efficient in
correcting for incorrect site alignment and identifying
identical regions (Figure 1).

6. Superposed structures are analysed and clusters are
determined based on structural similarity (controlled by the
configuration.clustering parameter). Resulting clusters
can be used to classify protein chains according to
conformational variability. Depending on the number of
protein chains, some experimentation may be necessary with
the clustering distance parameter, so that an optimum is
found between the two extremes (each structure forms a
separate cluster vs. all structure belong to the same cluster).
A representative from each cluster may then be chosen for
inclusion in the ensemble.

7. After optionally sorting according to sequence identity, chain
length, weighted and unweighted r.m.s.d., protein chains are
transformed and written out.

The resulting ensemble model can be used directly in
molecular replacement.
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Figure 1. Correcting  residue
misalignment with weighting in
superposition. Upper is the

unweighted superposition using an
alignment from CLUSTALW (Larkin et.
al, 2007). The lower is the weighted
superposition  with  the  same
alignment, resulting in much better
structural agreement.
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phenix.mr_rosetta: A new tool for difficult molecular replacement

problems

Tom Terwilliger?®, Randy Read’”, Frank DiMaio® and David Baker®
°Los Alamos National Laboratory, Los Alamos NM 87545
*University of Cambridge, Department of Haematology , Cambridge, CB2 0XY, UK
°University of Washington, Department of Biochemistry, Seattle, WA, 98195, USA

Correspondence email: terwilliger@lanl.gov

What is phenix.mr_rosetta?

The PHENIX development team is working with the Baker laboratory at the University of Washington to
combine the power of Rosetta structure modeling with PHENIX automated molecular replacement (MR),
model-building, density modification and refinement. The basic idea is to find MR solutions with
phenix.automr, rebuild them with Rosetta, including electron density map information, then rebuild
those models with phenix.autobuild. The combination of Rosetta rebuilding and phenix rebuilding
is the key part of this method. MR solutions are found with phenix.automr (Phaser), scored with LLG
(optionally following Rosetta relaxation), the best solutions are picked and rebuilt with Rosetta
including map information, the resulting models are scored with Rosetta, rescored with LLG, and the top
models are rebuilt with phenix.autobuild.

What is phenix.mr_rosetta good for?

phenix.mr rosetta can be very useful for cases where the search model used in molecular
replacement is slightly too distant to rebuild successfully with phenix.autobuild. It can also be
useful in cases where the model is too distant to even find a molecular replacement solution and pre-
refinement with Rosetta can yield an improved search model.

How do | run mr_rosetta?

You can run phenix.mr_ rosetta in a very automated way, or as a tool to find molecular replacement
solutions and to systematically improve them. To run phenix.mr rosetta you need to have both
PHENIX (any recent version) and Rosetta (development version as of this writing, or version 3.2 or later
once available), installed.

The basic inputs for phenix.mr rosetta are pretty simple: (1) a data file with F, SIGF and freeR
flags, (2a) a search model and an alignment file, or (2b) an hhpred file with a list of alignments and PDB
file names and (3) a pair of fragments files that you create and download from the Robetta server.

You can get the hhpred file with alignments by pasting your sequence into the server
at toolkit.tuebingen.mpg.de/hhpred. This takes about 10 minutes. You can get the fragments files by
pasting your sequence into the Robetta server at robetta.bakerlab.org/fragmentsubmit.jsp. This
takes a few hours to run, depending on the length of

your sequence. phenix.mr_ rosetta \
seq file=seq.dat \
Once you have these files, you simply edit a simple data=coordsl.mtz \
script file for phenix.mr rosetta that specifies search models=coordsl.pdb \
these files (and other parameters if you wish). A already placed=True \
typical command-line run of phenix.mr rosetta is fragment files = test3.gz \
shown at the right. fragment files = test9.gz \
rosetta models=20 \
Does phenix.mr_rosetta require a cluster to run? ncs_copies=2 \
phenix.mr rosetta does require building a space_group=p212121 \

use_all plausible sg=False \
nproc=200 \
group_run_command=gsub

number of Rosetta models with each model taking
from 10-60 minutes to build with a single processor. In
many cases, phenix.mr rosetta can succeed with
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as few as 20 models in each cycle. This means that a computer with 4 processors can be quite sufficient
to run phenix.mr rosetta and can finish in a day or so. In very challenging cases, as many as 2000
models may need to be built (the best models are picked and the density from the top 20% of models is
averaged) making a cluster the best option. phenix.mr rosetta can run on a Sun Grid Engine (SGE)
cluster and on a Condor cluster. It may also run on other clusters. To run on a cluster you simply specify
the command that you use to submit jobs ("gsub” for a SGE cluster for example).

Advanced uses of phenix.mr_rosetta

Once you have used phenix.mr rosetta a few times, you will find that you can control where it
starts and what it does in quite some detail. You can choose a particular solution that it is working on
and have it build Rosetta models for that solution, then write out a table of results that you can
examine. This way you can combine your intuition with the scoring that phenix.mr rosetta usesto
optimize your search.

You can also pre-refine your search model. This just means running Rosetta modeling on your search
model without including any information from the crystallographic experiment. This can be very useful
because Rosetta modeling can improve your search model and allow molecular replacement to succeed
in cases where it might otherwise fail completely.

Where can | read more?
You can see all about running phenix.mr_rosetta in the PHENIX documentation.
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Fuzzy space group symbols: H3 and H32
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Introduction

Most applications in PHENIX (Adams et al., 2010) have to process space group symbols and most use the
sgtbx space group toolbox for this purpose (Grosse-Kunstleve et al., 2002). The sgtbx space-group
symbol interpreter accepts a large variety of inputs, for example “19”, “P212121", or “P2(1)2(1)2(1)".
Unfortunately it is not straightforward to accommodate the “H3” and “H32” symbols commonly used in
macromolecular crystallography for the rhombohedral space groups R3 (No. 146) and R32 (No. 155),
respectively. Currently these symbols appear in about 2.5% (1764 out of 69655) files in the PDB
(www.pdb.org). This article explains the difficulties and how PHENIX handles rhombohedral space
group symbols.

Conflicting definitions for H3 and H32

The main reference work for information about space groups and space-group symbols is International
Tables for Crystallography Volume A (ITA) (Hahn, 1983-2006). Table 1.2 of ITA defines “symbols for the
conventional centring types”, which are P, C, 4, B, I, F, R and H. The definition of the H symbol is not
commonly used or known; the fractional coordinates of the lattice points within the unit cell are defined
as 0,0,0; §, g, 0; g, ;, 0. For comparison, the lattice points associated with the widely used R symbol are
0,0,0; g, %, g; g, ;, % The definition of the H symbol dates back to the precursor of ITA, Internationale
Tabellen zur Bestimmung von Kristallstrukturen (Hermann, 1935) in which it is used for the description
of 18 trigonal and 27 hexagonal space groups in  “triple cell” settings
(ccidbl.gov/cctbx/multiple_cell.html). These settings were replaced by primitive or R-centered settings
in International Tables for Crystallography Volume I (Henry & Lonsdale, 1952). In modern editions of the
International Tables, the triple cell settings only appear in a column of ITA Table 4.3.1. According to this
table, the symbol “H3” designates the triple-cell setting of space group 143, conventionally known as P3;

the symbol “H32” (formatted H3,) designates the triple-cell setting of space group 145, conventionally

known as P3,. ————

In general the macromolecular field uses the
standard Hermann-Mauguin space-group symbols
defined by ITA, but the PDB introduced a
conflicting de-facto standard for “H3” and “H32".
The root of the conflict is probably to be sought in
the well-known ambiguities of Hermann-Mauguin
symbols. A Hermann-Mauguin symbol uniquely
identifies the space group type (one of the 230
crystallographic space group types), but not the
setting. In the case of the seven rhombohedral
space groups, the same Hermann-Mauguin symbol
is used for a setting with a R-centered hexagonal
basis system (e.g. “R3 (hexagonal axes)” in ITA)
and a primitive setting with a rhombohedral basis
system (e.g. “R3 (rhombohedral axes)”). Figure 1
shows how the basis systems are related. The ITA

notation for the information about the. setting is Figure 1: Basis systems of R3 settings with “hexagonal
long compared to the Hermann-Mauguin symbol.  ;yes” and “rhombohedral axes” (ITA nomenclature).

This has lead many authors of crystallographic  The basis vectors are colored a=red, b=green, c=blue.
software and reference tables to introduce a more  For more information refer to ITA chapter 5.

rho.

hex.
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compact notation. For example, the symbols “R3:h” and “R3:r” appear in the International Tables for
Crystallography Volume B (Shmueli, 2001) Table A1.4.2.7 and the IUCr symCIF dictionary (Brown,
2005). The PDB has gone one step further by re-interpreting the first character of the “R3” and “R32”
Hermann-Mauguin symbols as information about the setting. This confusion of centering type (ITA
Table 1.2) and setting information is compounded by the conflict with the H centering type symbol.

The widely used SCALEPACK software (www.hkl-xray.com) has adopted a similar approach as the PDB,
but in exactly the opposite way. According to the SCALEPACK manual, the symbols “R3” and “R32”
correspond to the PDB symbols “H3” and “H32”, respectively, and vice versa. Table 1 summarizes the
symbols used for space groups 146 and 155 in different contexts.

Table 1: Summary of symbols used for space groups 146 and 155 in different contexts.

Int. Tab. Vol. A Int. Tab. Vol. B  PDB SCALEPACK
146 R3 (hexagonal axes) R3:h H3 R3
R3 (rhombohedral axes) R3:r R3 H3
155 R32 (hexagonal axes) R32:h H32 R32
R32 (rhombohedral axes) R32:r R32 H32

Handling of H3 and H32 in PHENIX

An obvious way to disambiguate the rhombohedral space group symbols in Table 1 is to take the unit
cell parameters into account. PHENIX makes use of this approach in some contexts, but it is not always
practical. In many situations space group symbols and unit cell parameters are processed independently
and combined only in advanced stages of involved procedures. A simple example is the validation of
space group symbols in the PHENIX Graphical User Interface (GUI). The symbols are validated and
standardized the moment the user presses the enter key or moves the input focus. It would be far more
complicated to defer the validation until unit cell parameters are available. Potentially the GUI manages
multiple unit cells and space group symbols and it may therefore not even be straightforward to
formalize the relationships.

Until recently, the PHENIX GUI did not recognize the “H3” and “H32” symbols. Starting with PHENIX
installer dev-603, the sgtbx library used by the GUI supports these symbols, following the de-facto PDB
standard. We had been hesitant to take this step because it is the only non-conformance of the sgtbx
library with the ITA standards. Eventually a considerable stream of negative feedback convinced us to
value practicality higher than the principle of full ITA compliance. Since the new support for the PDB
symbols is implemented in the sgtbx library, all applications using this library (phenix.refine,
phenix.xtriage, phenix.phaser, to name justa few) also support these symbols now.

In the contexts of reading and writing PDB and CCP4 MTZ files, PHENIX included support for the PDB
symbols for many years already. The interpretation of PDB CRYST1 records is implemented in the
iotbx.pdb module (Grosse-Kunstleve & Adams, 2010). In this context the rhombohedral space group
symbols are used essentially only to infer the space group type. The choice of basis system, hexagonal
vs. rhombohedral, is determined by inspection of the unit cell parameters. Internally PHENIX uses the
symbols “R3:H”, “R3:R”, “R32:H” and “R32:R” (they appear, for example, in the GUI), but when
formatting CRYST1 records for output the PDB symbols are used instead.

Space group information from MTZ files is processed similarly, but in most cases the space group
symbol included in the MTZ file is not actually used since the symmetry is usually defined
unambiguously via lists of symmetry operations. When generating output MTZ files, PHENIX uses a copy
of a CCP4 symmetry library file (1ib/data/symop.1ib in CCP4) to obtain the CCP4 space group symbol
by matching the symmetry operations in the sgtbx space group object with the operations listed in the
CCP4 library file. For the rhombohedral space groups, this mechanism produces the PDB symbols.
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Starting with PHENIX installer dev-603, symmetry information read from merged SCALEPACK files is
also subject to disambiguation via unit cell parameters.

Conclusion

The significant amount of programming effort and user frustration caused by the “H3” and “H32” space-
group symbols is a good example of how time can be lost by not adopting long established standards.
This is not meant to suggest revising the PDB as this would certainly only increase the confusion. Rather,
it is a salient reminder to the entire crystallographic methods developer community to avoid ad-hoc
approaches when possible. Ever more automated systems require highly reliable components and
unambiguous semantics. The effort spent early on ensuring reliability and clarity is usually rewarded
many times over as time passes.
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Introduction

This article focuses on creating publication-quality pictures that illustrate diffraction data. While
numerous tools are available for the routine conversion of raw data files into common image formats,
other plots require specialized markup and can only be produced by custom-written software. A
familiar example is the need to label each Bragg spot in the diffraction pattern with its proper Miller
index. Also, synchrotron beamlines with very fast detectors such as the Pilatus-6M have emphasized the
advantage of collecting data with thin rotation slices, which improve the signal-to-noise ratio but also
leave the image sparsely populated with Bragg spots. This raises the need for a visualization tool where
several consecutive images are summed together to give a more recognizable lattice. Another
mechanism to conveniently examine the lattice is to plot the signal that corresponds to plane sections
through reciprocal space. Old-style precession cameras would generate this type of photograph
experimentally, but for modern rotation geometry it is necessary to synthesize such images with pixels
taken from different shots over the whole data set. Code for all of these applications is available within
the LABELIT package, which is distributed with PHENIX and available for download at www.phenix-

online.org.

All examples discussed here are executed through the command line, as LABELIT has not yet been
incorporated into the PHENIX graphical interface. Figures are documented in a special subdirectory
within the source code: labelit/publications/ccn_visualization and can be reproduced by
following the instructions contained therein. General documentation for LABELIT is at
cci.lbl.gov/labelit.

Prerequisite indexing with labelit.index

Since the desired illustrations depend on knowledge of the Miller indices, we first perform an
autoindexing step to identify the principle axes and unit cell dimensions of the crystal. It is assumed
that the PHENIX package (any release subsequent to 1 Jan 2011) is installed and added to the path by
sourcing the appropriate setup file (phenix_env or phenix_env.sh). As currently implemented, the
program MOSFLM must also be placed on path under the alias ipmosflm; this is used during the
autoindexing step to obtain a firm estimate of the resolution limits.

Indexing is done in a new current working directory (cwd), with the raw data frames placed either in
cwd or any other directory:

cwd> labelit.index <data path>/file template 1 ###.img 1 90

In this example the diffraction pattern is indexed from two 1° rotation images (#1 and #90) spaced
widely apart to achieve the highest accuracy. Details are found in the LABELIT documentation. Of
interest below, any lattice with higher than triclinic symmetry can be described in multiple Bravais
settings:

LABELIT Indexing results:
Solution Metric fit rmsd #spots crystal system unit cell

:) 5 0.197 dg 0.100 494 orthorhombic oP 84.6 123.3 174.2 90.0 90.0 90.0
:) 4 0.197 dg 0.105 496 monoclinic mP 84.6 123.4 174.3 90.0 90.0 90.0
:) 3 0.197 dg 0.099 493 monoclinic mP 84.6 174.2 123.3 90.0 90.0 90.0
:) 2 0.052 dg 0.081 496 monoclinic mP 123.3 84.6 174.0 90.0 90.2 90.0
:) 1 0.000 dg 0.082 498 triclinic aP 84.6 123.3 174.0 90.2 90.0 90.0
MOSFLM Integration results:
Solution SpaceGroup Beam x y distance Resolution Mosaicity RMS
:) 5 P222 94.08 94.11 179.99 2.20 0.050 0.040

1 Pl 94.08 94.09 180.02 2.14 0.050 0.027
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Figure 1. Detail of a rotation image from the 2qyv dataset, illustrated with 1labelit.image. The Bravais lattice
is orthorhombic in model (a) and monoclinic in model (b), corresponding to the above-listed “LABELIT solution”
numbers 5 and 2, respectively. While describing the same physical data, the two models differ in the orientations
of the reciprocal cell axes (a*, b*, c*) and the resultant Miller index labels attached to each Bragg spot. As the two
lattice solutions are refined separately, slightly different subsets of Bragg spots are predicted by the two models
(yellow boxes), but this distinction is normally erased in the subsequent steps of postrefinement and data
integration.

As the printout shows, this orthorhombic lattice may be viewed either in the orthorhombic setting, or
alternately in the triclinic or three different monoclinic settings. These are the indexing results from a
dataset used by the Joint Center for Structural Genomics (JCSG) to solve the structure of Protein Data
Bank entry 2qyv. The JCSG data repository, available for download from www.jcsg.org (Elsliger et al.,
2010), is used for the examples in figures 1, 3 & 4.

To create the subsequent illustrations, the indexing results must be kept in their cached location in the
files cwd/DISTL pickle, cwd/LABELIT pickle and cwd/LABELIT possible. Therefore, if
multiple datasets are to be indexed, separate working directories should be created. Cached
information in cwd can be deleted with:

cwd> labelit.reset

PDF-format rendering of diffraction images: labelit.image
The first product of interest is a simple picture of a rotation photograph, with Bragg spots labeled as
shown in figure 1.

As with other programs in the PHENIX family, keyword input for labelit.image may be provided
either at the command line or from an "effective parameter file" listing the desired keywords in a
structured format. Relevant keywords can be listed out with:

cwd> labelit.image
cwd> labelit.image help # detailed descriptions for each keyword

Output from the undecorated labelit.image command may be used as a template to create the
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effective parameter file param.eff:

bravais choice = 5
image number = 1
window fraction = 0.4
window center x = 0.5
window center_ y = 0.5

image brightness = 1.0
pdf output{
file = output.pdf
box size = 500
}
markup{
bragg spot{
box = True
linewidth = 0.04
profile shrink = 0
color = yellow

}

miller index({
legend = False
font_size = 10
color = black
vertical offset = 10

}

inliers = False

}

The final image is computed with the command

cwd> labelit.image param.eff

or by conveniently supplying scoped command-line keywords for all non-default values:

cwd> labelit.image bravais choice=5 \
image number=1 \
pdf output.file=output.pdf \
markup.miller index.legend=True

Keywords and default values are as follows:

bravais_choice=None

This required keyword identifies the integer Bravais setting number to use for labeling the Bragg spots,
as enumerated in the "LABELIT solution" column of the LABELIT output. The list of possible settings
can be viewed again with the command labelit.stats_index. Fig. 1 illustrates how the output
varies with different Bravais choices; the same physical data are displayed but differently numbered
Miller indices are attached to each spot. The correct Bravais choice is not necessarily known at the time
of indexing. In the case shown (PBD entry 2qyv) the published symmetry happens to be P2:2:2,
corresponding to bravais_choice=5 (figure 1a).

image_number=None

The integer image sequence number to use in the illustration (required). It is not necessary to supply
the full file name, as the directory and file template are already cached by 1abelit.index.
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window fraction=1.0

Fractional length of the full image x and y dimensions to be used for illustration. A window_fraction of
0.5 would render a 1500 x 1500 square section of a 3000 x 3000 pixel raw image. To zoom in on an
image detail, pick progressively smaller values.

window center x=0.5
window center y=0.5

Fractional offset on the full image to be used as the center of the section to be illustrated. The center of
the raw image is at the coordinates (window_center_x = 0.5, window center y = 0.5), with x
and y being the slow and fast directions on the image, respectively. On the printed page, slow is vertical
and fast is horizontal, with the origin in the upper left corner.

image brightness=1.0

Factor used to multiply the pixel values to produce a customized brightness. By default, a brightness
scale is automatically calculated for each image, such that the 90t-percentile pixel is shown as saturated
(black). An image_brightness > 1.0 makes pixels more saturated (darker).

pdf output.file=None

Required file name for the output illustration. The top of the printed page will show the image file name
and relevant information taken from the file header, while the labelit.index results and
labelit.image command will be summarized at the bottom.

pdf output.box size=500

Number of points (unit of length, 1/72 inch) for the square edge of the illustration on the printed page.
markup.bragg spot.box=True

Boolean value to toggle the boxes that locate the predicted position of each Bragg spot.

markup.bragg spot.linewidth=0.04

Width of the printed lines used to outline each Bragg spot (in mm). Adjust this value to improve the
clarity of the illustration if the Bragg spots are too congested.

markup.bragg spot.profile shrink=0
Number of pixels to shrink the box edge for outlining Bragg spots. By default, the rectangular box is

sized to contain the average profile of the bright spots used by labelit.index for indexing, plus a
two-pixel margin on each side. Use this keyword to improve clarity if necessary.

markup.bragg spot.color=yellow

Color used for the Bragg spot boxes, as defined in the PDF-generating package Reportlab.

markup.miller index.legend=True

Boolean value to toggle the inlining of Miller index HKL values underneath each Bragg spot.
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Figure 2. Detail from a cubic-lattice diffraction pattern taken from a single image (a, Ap=0.2°) and a stack of five
images (b, Ap=1.0°). The rectangular areas are 195 x 487-pixel modules on a Pilatus-6M detector.

markup.miller index.font size=10
markup.miller index.color=black
markup.miller vertical offset=10

For the inlined HKL values, font size in points, ink color as defined in Reportlab, and vertical offset in the
downward direction in points, so that the HKL value does not overlap the spot.

markup.inliers=False

Boolean value to toggle dots locating the bright spots used by 1abelit.index for indexing. Red dots
indicate the spot center of mass, pink dots show the maximum pixel.

Summation of consecutive thin-sliced images

Diffraction photographs of still crystals, or those with an extremely small rotation angle, will record a
correspondingly thin slice through reciprocal space. Such photographs may exhibit few Bragg spots,
especially if the unit cell is small and those that are captured will represent partial slices through the
rocking curve, not full intensities. A sparse diffraction pattern from a 0.2° rotation photograph is shown
in figure 2a.

For the purpose of illustrating the diffraction, it can be advantageous to stack consecutive rotation shots
on top of each other, thus summing the partial intensities and filling out the layer slices so that the
lattice pattern is more readily apparent. Such a construction is shown in figure 2b. The picture was
created by supplying an image range keyword:

cwd> labelit.image image range=1,5
Keywords image range and image number are mutually exclusive and cannot be supplied together.

It is hoped that the availability of this method for stacking images will encourage crystallographers to
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make it a common practice to acquire very finely sliced rotation images, which is now practical with the
introduction of fast pixel array detectors such as the Pilatus-6M. Thin-sliced data (Pflugrath, 1999) have
several advantages including improved signal-to-noise and the ability to model the Bragg spots with
three-dimensional profiles. If it is easy to stack images for routine viewing, this removes the objection
that thinly-sliced images are difficult to examine visually.

Note: it is possible to go immediately from raw images to PDF-format pictures without indexing first, if
the object is to simply render the image without any markup. A separate command is provided for this
purpose:

cwd> labelit.pdf <image template (/home/data/lysozyme ###.img)>

Keyword options are:

image number = 1
image range = 1,5
window_ fraction = 0.4
window center x = 0.5
window center_ y = 0.5
image brightness = 1.0
pdf output{

file = output.pdf

box_size = 500

}

Synthesis of pseudo-precession photographs: labelit.precession_photo

While molecular structure is ideally explored with perfect crystals that give sharp Bragg peaks, it has
been the imperfections that have posed large challenges over the years. The visual examination of
images certainly plays an important role in diagnosing specific types of disorder (Nave, 1999). Aside
from mosaicity, or isotropic disorder that gives rise to wide rocking curves (the diffraction of a Bragg
spot over a large rotation angle), recent papers have highlighted specific types of long-range disorder
that produce recognizable signatures at the "non-Bragg" positions of the diffraction pattern. For
example, incommensurate modulation (Borgstahl et al, 2009), a periodic distortion of the crystal lattice,
generates discrete satellite Bragg spots; while lattice translocation disorder (Tsai et al., 2009), the slight
displacement of successive crystal layers, creates a pattern of streaks on specific spots.

Historically, the availability of Buerger precession cameras (e.g., Blundell & Johnson, 1976) made it easy
to examine specific planar layers of the reciprocal lattice, after painstaking alignment of the principal
crystallographic axes (a*, b*, c*) relative to the camera reference frame. In certain cases (Bragg &
Howells, 1954), differences in the Bragg spot shape could be described as a function of Miller index.
Achieving this type of convenient plot with modern rotation data requires a software calculation for two
reasons: first, each image represents a curved surface of reciprocal space, not a plane; and secondly, the
crystal axes are now rarely prealigned with the camera.

Assuming that images are available from a wide enough rotational range, the requisite planar section
can be synthesized. However, it is best to keep in mind that there are implicit limitations. We assume,
for example, that the crystal is rigidly fixed to the goniometer rotor, so its orientation is exactly known
for each source image from the dataset. Deviations from this ideal will degrade the synthesized image,
particularly at higher scattering angles. Also, our implementation does not apply scaling corrections.
Thus, factors such as accumulated radiation dose that change the sample over time will cause
symmetry-related reflections to appear unequal in intensity. Geometric approximations are
unavoidable: in order to create a mapping between the raw image and reciprocal space coordinates, it is
assumed that each raw image represents the center of its rotation range (for example, a 1° rotation
image covering ¢=[0°1°] is uniformly assigned the value ¢=0.5°). Moreover, image pixels far from the
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Figure 3. Reciprocal space sections illustrated with labelit.precession_photo for structures 1vk8 (a) and
2qyv (b). The origin of the streaks extending along the c* axis in (a) was not examined in the original publication
(Dermoun et al, 2010); but is presumably associated with lattice disorder.

rotation axis map to a larger rotational path through reciprocal space and appear as large quadrilaterals
on the synthesized image. Clearly, the best sampling is obtained with fine rotational slicing (Pflugrath,
1999) and small image pixels.

Despite these caveats, labelit.precession photo can be used (figure 3) to clearly illustrate
phenomena that we recently cited: streaky Bragg spots of unknown origin associated with PDB code
1vk8 (Sauter & Poon, 2010) and a pattern of alternating weak and strong Bragg spots due to
pseudotranslational symmetry in PDB structure 2qyv (Sauter & Zwart, 2009). The command line
keywords for labelit.precession_photo are handled exactly as described above for
labelit.image:

bravais_choice=None
image range=None

pdf output.file=None
pdf output.box size=500

Identical to the parameters described for labelit.image. A "None" value indicates required input.
Here it is advantageous to specify an image_range covering the entire dataset, so that the coordinate
grid of the synthesized image is filled in to the largest extent.

pixel width=600

The width of the synthesized coordinate grid in pixels, which is then fit into the
pdf output.box_size dimension expressed in points.

resolution outer=3.0

The high resolution limit of the requested plot, expressed in Angstroms.
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intensity full scale=256

Intensity value on the raw image that is treated as fully saturated (black).

plot section="H,K,0"

Determine which principle axes are in the plane of the printed page; either a*, b* (H,KX,0); b* c*
(0,K,L); ora* c* (4,0,L). Also, upper- and lower-layers can be sectioned, i.e., "H,XK, 1"; "H,K, -1"; etc.

layer width=0

The width of the reciprocal space section to be illustrated, given in fractional Miller index units. For
example, if plot_section is "H,K,0" and layer width is 0.05, then all image pixels mapping to
reciprocal space coordinates between H,K,-0.025 and H,K,0.025 are plotted, with overlapping
pixels being averaged. By default layer width=0, corresponding to a section thickness of one pixel.

apply symmetry=None

Point-group symmetry used to average the data. This option is not recommended by default, but is
provided to respond to user comments that labelit.precession_photo printouts do not always
look like true precession photographs. The full reciprocal space layer is not always covered. This is
because the experimental rotation range is often less than the full 180° required for full coverage. Can
point-group symmetry be applied to get an illustration that looks like a full precession photograph?
Caution must be exercised, as such an operation could erase distinctions that might be important! As
noted above the synthesized image normally reflects differences due to radiation damage, as well as
variations in other factors such as the incident beam flux and the length of the absorption path.
Moreover, the true symmetry of the diffraction may not be as high as implied by the Bravais choice, as
with a monoclinic crystal with §§ angle close to 90°, which can be plotted within an orthorhombic cell.
With these warnings in mind, the user can choose to impose point-group symmetry on the diffraction
pattern if desired, with the apply symmetry keyword.

Two choices must be made when selecting the point-group symmetry. First, should Friedel symmetry,
HKL = HKL, be imposed or not? Second, for certain crystal systems (such as tetragonal) there are
alternate Laue groups to select. The Laue group cannot be selected automatically based on indexing
alone, as it is necessary to compare symmetry-equivalent intensities after integration and scaling. To
make the full matrix of choices clear, the user should type the undecorated command:

cwd> labelit.precession photo

which outputs a table enumerating the point group choices for each possible Bravais setting, for
example:

Bravais choice Lattice Laue-group Reflection-symmetry Friedel-only
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9 tP 4 /mmm 422 -1
9 tP 4/m 4 -1
8 oC mmm 222 -1
7 mC 2/m 2 -1
6 mC 2/m 2 -1
5 oP mmm 222 -1
4 mP 2/m 2 -1
3 mpP 2/m 2 -1
2 mP 2/m 2 -1
1 aP -1 1 -1
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Figure 4. L=4 sections from the 1o3u diffraction pattern (Eriandsen et al., 2004). The space group of the structure
is P41212, and the data are plotted either in the primitive tetragonal setting (a, c-f) or the C-centered orthorhombic

setting (b). Point group symmetries imposed on the data are 1 (c), 4 (d), 4/m (e), and 4/mmm (f).

Various combinations of bravais choice and apply symmetry produce drastically different
pictures, as illustrated in figure 4. Each panel plots the same 20° of rotation data from a tetragonal
diffraction pattern. The bravais_choice keyword changes the axes on which the data are plotted
without altering the intensities that are displayed, as seen by comparing panels (a, tP) and (b, oC). In
contrast, the apply symmetry option has the effect of increasing the reciprocal space coverage and/or
averaging symmetry-redundant measurements of the displayed reciprocal space coordinates. For
example, the application of Friedel symmetry (c) brings data from the L=-4 section on to the L=4 layer.
Application of 4-fold symmetry (d) produces a clover-leaf pattern around the L-axis, while the
combination of both Friedel and 4-fold symmetry (e) combines both effects. Finally, 4/mmm symmetry
(f) yields two mirror planes at H=0 and K=0.

PNG- and GIF-format output

For completeness, we mention that LABELIT can also generate PNG-format images of the diffraction
pattern:

cwd> labelit.png <image file> <output file.png> [-large]

cwd> labelit.overlay distl <image file> <output file.png> [-large]

cwd> labelit.overlay index <image file> <output file.png> [-large]

cwd> labelit.overlay mosflm <image file> <output file.png> [-large]

The command labelit.png generates an undecorated image, while labelit.overlay distl
colors the subsets of bright spots either used (green) or not used (blue) for indexing. Commands
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labelit.overlay index and labelit.overlay mosflm add markup of the predicted lattice for
the highest Bravais choice, as refined by either LABELIT or MOSFLM, respectively. The only allowed
keyword is —large, which imposes a one-to-one mapping between raw data pixels and pixels on the
generated picture, otherwise the raw data pixels are binned in 2 x 2 squares.

An animated GIF-format movie can be generated of the entire dataset (this does not require indexing):

cwd> labelit.dataset animation <template> <first image> <last image> <out>
cwd> labelit.dataset animation /home/user/mydata/lyso ###.img 1 90 out.gif

Extensibility of Python code

Developers should be aware that the features discussed here could easily be extended by simple
scripting in Python language. The applications discussed above are built on standard cctbx
components for handling of detector formats (iotbx.detectors) and command-line keywords
(Libtbx.phil). Third party extensions are used for standard image formats (Python Image Library)
and generation of PDF output (Reportlab).
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Introduction

Crystallographers across all specializations invariably inspect electron density maps. This small article
illustrates the effects of selected fundamental factors that shape a map, primarily to explain why
macromolecular maps are often not scaled to absolute units (such as e/A3). Instead, "sigma scaling" is
used, which is to compute the signal-to-noise ratio. Technically, this is to divide the density values in the
map by their standard deviation (commonly called "sigma"), with the result that the standard deviation
of the scaled values is one. Useful contour levels for graphical display are easily predictable for sigma-
scaled maps, typically in the range 0.5-2. By contrast, the range of absolute electron density values is far
more dependent on these factors:

- I[sotropic Displacement Parameters (known as Ujs, 0T Bis)
- High Resolution Limit

- Grid Resolution Factor

- Omission of the Fourier coefficient Fooo

Here we show using a series of plots that these factors lead to a wide spread of absolute electron density
values. We also take a brief look at how these parameters determine whether neighboring atoms are
resolved in a density map.

B;;, dependence

For brevity, in the following we refer to isotropic displacement parameters as Bi, (see for example
Grosse-Kunstleve & Adams (2002) and references therein). The Bis, dependence of electron density
values is best illustrated via the Analytical Fourier Transform (AFT) since this eliminates the influences
of the other factors in the list above. The formula for the AFT of a scatterer with displacement parameter
Biso and an N-Gaussian approximation to the X-ray scattering factor was given by Agarwal (1978) (see
also Afonine & Urzhumtsev (2004) and references therein):

C am N\ _amirt

o= a2 ) (1)

=1 bi + Biso

Here p(r) is the electron density at a distance r (in A) from the atomic center. a; and b; are the
coefficients of the N-Gaussian approximation to the scattering factor f(s) at the diffraction angle
measurement s = sin 8 /A:

N

) =) ae 2)
i=1

In the examples that follow, we work with a 5-Gaussian approximation (Grosse-Kunstleve et al., 2004)
to the X-ray scattering factor of carbon. The corresponding Gaussian approximations of the
International Tables for Crystallography Volume C (1992) and Waasmaier & Kirfel (1995) could not be
used for the present purpose because they both involve a constant term, which is equivalent to a
Gaussian term with b; = 0. If the isotropic displacement parameter approaches zero, this leads to
numerical instabilities when computing the AFT, as is apparent from equation (1). However, it should be
noted that the International Tables, Wassmaier & Kirfel and 5-Gaussian approximations yield nearly
identical results for Bis, values that are significantly different from zero.

Figure 1 shows AFT results with selected B, values ranging from 0.0 to 1.0 A2 in figure 1 (a) and powers
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Figure 1: AFT results with selected Bis, values. The x coordinate is equivalent to the radial distance r of equation

(D).

ranging from 4 to 64 A2 in figure 1 (b). The plots show that the absolute values of the electron densities
are highly dependent on the displacement parameter. The electron density integrated over the unit cell
is equal to the six carbon atom electrons for all values of Bj,, but the plots show how this charge is
spread over the unit cell as B, increases, or conversely how it is concentrated around the carbon site as
Bis, decreases. As a result, there cannot be any universally meaningful electron density contour level

when the electron density is on an absolute scale.

High resolution limit

Figure 2 compares AFT and Discrete Fourier Transform
(DFT) results with Bi,=0 Az The unit cell used in the
calculation is a cube with edge length 5 A, but this value is
not critical. The grid resolution factor for the DFTs is 1/4,
which is used to determine the approximate map grid
spacing by multiplication with the high resolution limit, for
example 0.5A-1/4 = 0.125 A. The grid is constrained to
uneven values to accommodate a symmetric range of Miller
indices, for exampling ranging from -20 through 20 in each

dimension, which leads to a slightly smaller grid spacing (5
A/41=0.1224).

The blue plot is the AFT as before in figure 1. The red plot is

the DFT of Feuc Fourier coefficients computed up to a high
resolution of 1/12 A (0.083 A), which is the nominal limit
of the 5-Gaussian approximation. The red plot is shown
here mainly to demonstrate that the AFT is approximated
well at an extremely high DFT resolution. The green plot is
the DFT with Fourier coefficients up to a high resolution of
0.5 A, which is still a very high resolution for
macromolecular structures. The green plot illustrates that
the omission of Fourier coefficients beyond the 0.5 A
resolution limit has a large impact on the electron density
values if Bis=0.

Figure 3 is similar to figure 2, but Bis,=4 A? is used, a value
in the typical range for small molecule crystal structures. In
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Figure 3: AFT and DFT results with Bi,=4 A2
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this case the AFT and DFT electron density values are in 10

close agreement if the high resolution limit is 0.5 A. The AFT, DFT high resol. 0.5, 1.0 A
plots with lower resolution limits (1.0, 2.0 and 3.0 A) 2.0
demonstrate the still very strong influence of the _ 0'8/\
resolution limit on the absolute electron density values <
given a non-zero Big. ER

é 3.0
Figure 4 is similar to the previous figure but Bi,=32 A2is 2, ——— —— |
used, a value more typical for macromolecular crystal 5.?
structures. Comparison of figures 3 and 4 illustrates that ° oal B, 32 & |
the discrepancy of the AFT and DFTs depends less grid resol. 1/4
strongly on the resolution limit if the value of the
displacement parameter increases. 007 =02 o0 0.2 0.4

= coordinate [A]

Grid resolution factor Figure 4: AFT and DFT results with Bis,=32 A2
Figure 5 illustrates the influence of the grid resolution 12
factor on the appearance of the electron density. Bis,=4 A2 AFT B AR

and a high resolution limit of 1.0 A is used in the plots. The o

resolution factors are 1/2,1/3,1/4 and 1/8. It can be seen
that the absolute electron density values are hardly
affected by the resolution factor. Smaller resolution
factors lead to smoother densities, but imply increased
memory and runtime requirements. In most situations the
factor 1/3 or 1/4 is a useful compromise.

DFT high resol. 1.0 A

electron density [¢/A® ]
(=)}

grid resol. 1/8,

1/4, 1/3, 12

Omission of the Fourier coefficient Fyqq
Figure 6 illustrates the effect of omitting the Fooo structure L — =3 00 03 0z
factor in the DFT, as is common practice. The contribution @ coordinate [A]

to the electron density is the constant (p) = Fyoo/V, where  Figure 5: DFT results with a selection of grid
V is the volume of the unit cell. The plots show the resolution factors.

fractions contributed by (p) to electron density maxima at
carbon positions of the model with PDB code 1labl
(www.pdb.org); the values plotted are average fractions
over all carbon positions. The DFTs were computed using high resol. 0.5, 1.0, 2.0, 3.0, 4.0 A
Feale with high resolution limits 0.5, 1.0, 2.0, 3.0 & 4.0 A and
carbon Bi, values 0, 4, 32, 64 and 128 A2 Similar
calculations with other smaller and larger protein models
showed that the plots in Figure 6 are typical. The {p)
fraction of the electron density is a function of both the
resolution and the displacement parameters. For very
high resolution and small B, the {p) fraction is negligible
but can grow to be significant at low resolutions and large
Biso. The {p) fraction in typical protein structures ranges

from about 10% to 30%. 0.05 2040 60 80 100 120 140
B, [A*]

0.5

<rho> fraction of peak height

grid resol. 1/4

Two-atom examples Figure 6: {p) = Fggo/V contributions to
Theoretically, features separated by more than half the maxima at carbon positions.

high-resolution limit of the Fourier coefficients can be

distinguished in a DFT map. For example, two point scatterers separated by 1.5 A should appear as
separate maxima in a map if the Fourier coefficients extend to 3 A or higher. Figure 7 illustrates the
practical limits for resolving two neighboring carbon atoms with selected Bis, values and data resolution
limits. The Gaussian shapes of both the X-ray scattering factor and the isotropic displacements lead to a
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Figure 7: Examples of electron densities around two carbon atoms separated by 1.5 A.

blurring of the electron density. Two carbon atoms separated by 1.5 A are difficult to distinguish at 1.5 A
resolution even with Bis,=0 A2, Increasing Bis, values quickly reduce the effective resolution further.

Figure 7 also provides further examples of the spread of absolute electron density values; note the
different scales of the y-axes in the matrix of plots.
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Synopsis
A Rice-type probability distribution with properly adjusted parameters is a reasonable approximation
for observed structure factor magnitudes when merohedral (or pseudo-merohedral) twinning is
present. This allows to extend easy the usual maximum likelihood refinement technique for twinned
structures.

Introduction

One of the most attractive ideas in crystallographic refinement is to enhance refinement power by
maximisation of a likelihood function instead of the conventional minimisation of the least squares
(LSQ) criterion. A special type of this likelihood function, which was used primarily for the evaluation of
model quality (Lunin, 1982; Lunin & Urzhumtsev, 1984; Read, 1986; Lunin & Skovoroda, 1995;
Urzhumtsev et al., 1996), was shown to be a good new goal function for the refinement of atomic models
(Pannu & Read, 1996; Bricogne & Irwin, 1996; Murshudov et al, 1997; Adams et al., 1997). Now
Maximum Likelihood (ML) refinement is an essential feature of such mainstream program complexes as
phenix.refine (Afonine et al., 2005), REFMAC (Murshudov et al.,, 1997), Phaser (Read, 2001) and others.
In this paper a simple way to extend this idea for refinement of twinned structures is discussed. In
recent decades, twinning has been shown to be an important feature of macromolecular crystals
(Yeates, 1997; Yeates & Fam, 1999; Dauter, 2003; Parsons, 2003; Lebedev et al,, 2006). Twinned crystals
are composed of separate differently orientated crystal specimens. If certain conditions for unit-cell
parameters and orientation of the specimens are met (merohedral twinning), the reciprocal-space
lattices of different domains coincide and the measured intensity of a diffracted beam becomes the sum
of two (or more) different intensities that come from different specimens. The basic idea of ML
refinement, namely, to maximise the probability to reproduce the observed values after allowed random
corrections of the model have been done (Lunin, Afonine & Urzhumtsev, 2002), can be easily extended
to take twinning into account. The problem is how to calculate the likelihood function practically. In this
paper, a simple approximation for the likelihood function in the case of twinned intensities is suggested
and tested. The found approximation allows conserving the usual “shape” of ML criterion and requires
small corrections only in computational procedures.

1. Glossary

In this paper we distinguish four kinds of values:

*  “true” or “theoretical” values that correspond to real structure and that are the goal of our study;

* “observed” values (intensities, or structure factor magnitudes) that were obtained in an
experiment; they differ from the true values by experimental errors;

e “calculated” values that were obtained with the use of some model; these value differ from the
true ones due to errors present in the model and approximations used in calculations;

* random values (structure factors, or errors) appear when we consider a value calcuated with
the use of randomly generated additives.

2. Maximum likelihood refinement for twinned structures

2.1. Merohedral twinning

The phenomena of merohedral twinning may appear when the exact or approximate (pseudo-
merohedral twinning) symmetry of crystal lattice exceeds the symmetry of crystal content. If R is such
“extra” rotation symmetry operation and two specimens of the crystal linked by this rotation are
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present in the X-ray beam simultaneously, then the diffraction patterns from two specimens overlap. If
I (s) is the intensity of § = (h,k, l) the indexed reflection for the first specimen, then theoretically, the

measured intensity should be equal to

Jtheor (S) — (1 _ K_)Itrue (S) + K_Itme (RTS) (1)

Here 1 -k and k are relative volumes of two specimens. The twinning fraction K may be estimated by
different methods (Yeates, 1988; Dauter, 2003; Lunin et al., 2007), which are outside of the scope of this

paper.

2.2. Conventional least squares refinement
If some preliminary model of the studied structure exists a conventional least square refinement of the
model parameters q could be performed by minimisation of discrepancy

Qs0(a)= D (H ™ (s:q)~ H"*(5))” = min

S

2

with
H™ (s)= 7™ (s). 3)
e (S)=\/(1—K) ‘2

where J (s) are experimentally measured intensities from the twinned crystal.

TK Fcalc (RTS;q)‘Z ’ @

Fcalc (S, q)

A weakness of criterion (2) is that the model can contain irremovable errors so that no combination of

flexible model parameters makes F“ equal to F"* (and correspondingly H“" equal to H"*). As a
simple example, a portion of the atoms may be absent in the current model and their absence can not be

compensated by moving of the atoms present in the model. Furthermore the target values H™ in (2)
differ from " by experimental errors. Furthermore, these errors cannot be corrected by changing of

model parameters either. To some extent, these shortcomings may be overcome in the framework of
maximum likelihood approach.

2.3. Maximum likelihood refinement
Maximum likelihood approach draws into refinement additional information present in the form of
some statistical pattern for irremovable errors. For example one can consider measurement errors

O(s) =" (s)=J"(s) (5)

as independent random variables normally distributed with zero mean and variance o” (s) (estimated

in the experiment for every reflection separately). Similarly one can assume the any absences of atoms
in the current model be uniformly distributed in the unit cell. After statistical properties of irremovable
errors has been modeled the question may be asked "How large is the probability to get the calculated
values equal to the observed values after random corrections have been introduce following the defined
statistical pattern of irremovable errors?” This probability is called as “statistical likelihood” and it may
be calculated for the independent observations as the product
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L =[] Probabitity{H*" (s:q) = H"" (s)}, ©)

where H“" (s) stands for the random value that is the result of improvement of calculated values by

random corrections. The likelihood may be adopted as a measure of goodness of the current structure
model: the larger the likelihood value (6) the more reasonable the model. The choice of the model
parameters resulting in the largest likelihood lies in the basis of maximum likelihood approach in
mathematical statistics.

2.4. Calculation of the likelihood

One of the key problems in applications of the ML approach is the calculation of probability distributions
for “randomly corrected” values, ie. for H" (s) values in our case. If the irremovable errors are
restricted to the model incompleteness and measurement errors one can define random value H“” (s)

as

Fer (S;q)r +ic[Fer (RTS;q)‘z + 5(5) , (7

H™ (5:0) = |(1-x)

Fcor (S,q) - Fparr (S,q) + Ulost (S) )

®)

Hereq is a set of current model parameters; F’"m(s;q) are usual (deterministic) structure factors
corresponding to the current partial model; 6(s) is a random error distributed with the normal

distribution with zero mean and variance o (s); | O (s) are random structure factors calculated from
randomly generated atomic positions.

A reasonable approximation to probability distribution of random variable F*” (s) is known (see e.g.,

Srinivasan & Parthasarathy, 1976) and for a general type non-centrosymmetric reflection is

FZ Fpart 2
2k ol +(F™(s))
2, (s)

)

2

with
2, (s)= Eff(s)' (10)

where fj (s) are atomic scattering factors for the missing atoms and /,, is the modified Bessel function.

The distribution of the form (9) is often known as the Rice distribution.

The distribution for F“" (S) may have a more general form with two parameters a(s)and ﬁ(s) (Lunin
1982; Lunin & Urzhumtsev, 1984; Uzhumtsev et al., 1996)

P, (F;s)=

r [ Peals)(r ) [

Bls) | B() A(s)
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If more sources of errors are taken into account, e.g. atomic scattering factors are not known exactly,

common scaling factor should be applied to H“” (s) before comparing with H " (s), some errors are

present in positions of atoms included in a rigid body block. Non-uniform prior coordinate distributions
for the missing atoms may be involved in this scheme as well (Afonine et al., unpublished).

2.5. Rice-type approximation for twinned intensity distribution

To get the final distribution that could be used to
calculate the likelihood (6) one should calculated the
triple convolution of probability distributions for

Fcor(sr, F“"'(RTS)‘2 and 5(s). This is not a simple

task and the result cannot be presented in a simple
analytical form. To avoid this problem one can skip the
problem of convolution and suppose that the random

values H" (s) obey directly the distribution (11) with

adequately designed a(s)and ﬁ(s) parameters. A

reason for this hypothesis is that distribution (11)
originates from Gaussian two-dimensional distribution.
It is simply the marginal distribution of the distance-
coordinate when the two-dimensional Gaussian
distribution is written in polar coordinates. Due to the
Central Limit Theorem (of theory of probabilities)
Gaussian distribution appears in many different
circumstances so that one can hope that its derivative

(11) is suitable for H*" (s) values as well.

To check this hypothesis a series of test was performed
(See section 3 below for the details). In these tests

simulated sets of H”bs(s) values were checked against

theoretical distributions (11) with properly adjusted
parameters. It was found that correspondence is very
good for relatively strong reflections and is reasonable
for weak ones. More definitely, the similarity of
empirical and theoretical curves depended mostly on
relative value of intensity of reflection in comparison
with the part of the true intensity corresponding to the
missing atoms. To characterise a reflection power we

used the ratioA=HmlC(s)/1/2QiSi, where ZQ(S) is

mean intensity corresponding to the lost atoms defined
by (10). Figure 1 shows empirical and theoretical
probability distribution for different values of this ratio.
A more accurate comparison was made with the use of

){2 criterion. For large enough values of the ratio (4 > 1
) these tests give no reason to reject the null hypothesis
that the distribution of H“” (s) values is consistent with

probability distribution (11). At the same time, for weak
reflection the confidence level was small enough (see
test 9 in table 1) and the approximation becomes less
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accurate (figure 1c). It is noteworthy that the tests did not reject the hypothesis when the twinning
fraction was set as k' = 0. This means that in the usual ML refinement (without twinning) experimental
measurement errors may be “absorbed” by o/ 8 values.

A similar approach may be used if one has more then one twinning operation present. The only
difference is that the calculated values H“"“ (s) are a mixture of more then two intensities.

2.6. Maximum likelihood refinement for twinned crystals
If the parameters a and f are defined and q is the set of flexible parameters of the partial model (i.e.

parameters that are allowed to be changed in the refinement) then the likelihood function (6) takes the
form

e H (s 2+a2 s)(H“ (s; 2 a(s)H™ (s)H“ (s:
L(Q)=H/§({S) exp ) ﬁ((s))( (=) Ak A /3((s))H = (12)

(This formula supposes the non-centosymmetric reflection of a general type only be used in the
calculation; see section 1.7 below for a more general case).

The calculation of logarithm of (12), changing the sign and omitting the terms that do not depend on the
flexible model parameters, reduces the problem of maximisation of (12) to the problem of minimisation
of the standard ML criterion

za(S)Hobs (S)Hcalc (s;q) .
[)’(S) min (13)

—-1InJ,

Ou(0)=3 - (S)(;I:;(&q))

with H”bs(s) and H“" (s) values defined as (3-4). The only difference with the conventional ML-

criterion is that F*“ (s) values as replaced by H““ (s)

2.7. Maxumum likelihood estimates of o and  parameters
The minimisation (13) supposes that the parameters a(s) and ﬁ(s) are known for all reflections. To

define these parameters providing model parameters are known, the maximum likelihood principle
may be applied again (Lunin & Urzhumtsev, 1984; Read, 1986; Lunin&Skovoroda, 1995). Let us suppose

that for a thin spherical shell in the reciprocal space parameters a(s) and ﬁ(s) are the same for all
reflection in the shell, i.e. a(s) =, ﬁ(s) = [ and the product in (12) is calculated over reflection from
this zone only. Consider now that the model parameters qin (12) be known and fixed, then the
likelihood function depends on two parameters & and f only and these parameters may be defined by
maximisation of the likelihood again. As before, this maximisation can be reduced to minimisation of

Qaﬁ(a’ﬁ) _ Klnﬂ_'_%z(l_lobs (S))Z +%22(Hcalc (S))z ~ glnlo(ZaHObS(s)H"alc (S)) ”

B

S s

where K is the number of reflections included in the sums. Now only the terms depending on « and f3
are included in minimisation criterion. A technique of minimisation of this function is described in

Computational Crystallography Newsletter (2011). 2, 29-41 33



ARTICLES I

(Lunin & Skovoroda, 1995).

As it was shown before for usual refinement (Lunin, 1982; Lunin & Skovoroda, 1995) parameters ¢ and
B and model parameters  are highly biased if defined from the same set of reflections. So that & and
B parameters should be defined on the base of test reflections only (ie. ones excluded from

refinement). The same observation is valid in the presence of twinning as well. Furthermore, some
special attention should be paid when splitting the full set of reflections into work and test parts. The

pair of reflections linked by the twinning law (ie. s and R”s) should have similar type (“work” or
“test”).

2.8. Remark on centrosymmetric and special reflections
The distribution (11) may be used as is for a general type non-centrosymmetric reflection. To go to a
more common case we should correct distribution (11) for non-centrosymmetric reflection as

_2H H 4 (s)(H(s)) (za(s)HHmlc(s))
e(s)B(s) £(s)B(s) N "e(s)ps) ) 19

P, (H;s)=

Here the parameter g(s) depends only on the reflection indices and on the particular space group
I'= {(Gv,tv)}n_1 and may be calculated as the number of reciprocal-space symmetries Gf that when

applied to the vector sleave it invariable, i.e. G§s=s. For centrosymmetric reflection the

corresponding probability distribution has the form

2 o _H2+a2(s)(H"‘”"(s))2 cos a(s)HH“" (s)
me(s)B(s) P 2¢(s)B(s) h( e(s)B(s) ) (16)

The changes in (12-14) are straightforward. We do not include the statistical weight g(s) into ﬁ(s)

P, (H;s)=

parameter as it would destroy the hypothesis that all ﬁ(s) are the same in a thin spherical shell in the
reciprocal space, which is used to define @ and f parameters provided the current model is fixed (see

section 2.7).
3. Testing the null hypothesis

3.1. Tests and results
A series of tests were performed to check to what extent the Rice-type distribution (11) might

approximate the distribution of measured twinned intensity for a particular reflection. In every such

N
test a sample of “experimental” magnitudes {H;}”}. | was generated by a Monte Carlo type procedure
j=

for some fixed reflection s taking into account three sources of uncertainties:

*  “missing” atoms, i.e. ones present in the real structure, but absent in the current partial
model;

* anexperimental error when measuring intensities;

* an arbitrary scale for the measured intensities.

The parameters a” and B in the theoretical distribution

Computational Crystallography Newsletter (2011). 2, 29-41 34



ARTICLES I

H+d’ (H’)2 , (2aHH“”C)
0

P’h“’”’(H;a,/a’)=27Hexp - 3 3

(17)

that matches best the “observed” magnitudes were defined by maximisation of the likelihood

N
_ theor obs
L(a»ﬁ’)_l_llp (HJ ,O!,[J’)ﬁmax (18)
=
(see details below). Figure 1 allows visual comparison of optimally fitted theoretical distributions with
the empirical ones calculated from generated H;.’bs sets. These graphs reveal quite reasonable

correspondence and back the idea that distribution (11) is suitable to describe deviations in
experimental magnitudes when a twinning and experimental errors are present. To estimate the

N
correspondence quantitatively the “null hypotheses” that {H;’bs}.l are random numbers generated
j=

following to Pthe”r(H;a”pt,/J’”pt) probability distribution was checked under x” criterion. Table 1

provides the obtained ){2 value as well as the significance value defined as the probability to get the
N

obtained or even worse (larger) value of ){2 in the case when {H;’bs}. | are really obtained with the
j=

tested distribution (i.e. the null hypothesis is true). The null hypotheses should be rejected if the
corresponding confidence level is small. Table 1 shows that for strong reflections one has no reasons to
reject the null hypothesis. This is not the case for weak reflections. Nevertheless, the differences in
empirical and theoretical distributions concern mostly “tails” of distribution. In ML refinement one tries

to adjust the H™" values to maxima of corresponding distributions, so that inaccuracies in “tails” of
distributions for weak reflections should not affect the results of refinement too greatly.

cale

Table 1. Results from a number of tests explained in the text. H““* and %, are defined by equations (4) and (10)

correspondingly.

test ' o, H < | theoretical defined #‘ XZ confidence | Fig.
number ([_]“dé’)2 \/g a B o B bins p

1 0. 0. 5.04 1. 8701. | 1.0 8690. | 29 26.3 | 0.61

2 0. 0. 2.37 1. 8675. | 0998 | 8721. |29 34.2 | 0.23

3 0. 0. 0.50 1. 8601. | 0.678 | 9828. | 29 20.6 | 0.87

4 0. 0.05 5.04 1.001 | 8897. | 29 36.0 | 0.17

5 0. 0.05 2.37 0.998 | 8832. | 29 27.6 | 0.54

6 0. 0.05 0.50 0.682 | 9816. | 29 21.6 | 0.83

7 0.36 | 0.05 4.08 1.011 | 5647. | 29 241 | 0.73 la
8 0.36 | 0.05 2.48 1.039 | 4435. | 29 242 1 0.72 1b
9 0.36 | 0.05 0.78 1.435 |3087 |29 114. | 4.2x10-12 1c

3.2. Test parameters
Every particular test was defined by a set of parameters:

Computational Crystallography Newsletter (2011). 2, 29-41 35



ARTICLES

* the indexes of two twinned reflections s = (hl,kl,ll) and R's = (hz,kz,lz) and magnitudes and

phases of the corresponding structure factors calculated for a partial model; in our test the
partial model was obtained by exclusion of 10% of atoms randomly from 1C5E (Yang et al,
2000) model;

* the twin fraction value k; (this value was defined as 0.36 for 1C5E crystal);
* the space group ( P2, for 1C5E);

¢ the number N

missing

of atoms that are present in the whole structure, but are absent in the partial

model; the positions of these atoms were considered as independent random variables

uniformly distributed in the unit cell; N, . was set to 209 in our tests (10% of the whole
number of atoms in 1C5E model);

* the accuracy of measuring of intensities ¢,; the measuring error 4 was considered as normally

distributed random variable with zero mean and variance 0‘12; O, was set to zero or to
1\ 2
0.05%* (H‘“]‘ ) in our test;

* the scale factor Scale converting magnitudes into some relative scale; It was found that this
coefficient influence on optimal & and f values, bit does not influence on the quality of
approximation; the results in table 1 correspond to value Scale =1;

* start value for random number generator, number of bins for ){2 statistics, etc.

As a result simulated magnitudes Hobs were calculated as

H = Scale*m' (19)
i (1_K)‘Fpan(hl,kl,ll)"'U(hl,kl,ll)r +K‘Fp‘m(hz,kz,lz)‘FU(hz’kz,lz)r (20)

where U(h,k,l) is a structure factor calculated from randomly generated coordinates of N, atoms

missing

and O is generated randomly with Gaussian distribution N(O, O,z ) A characteristic value

H cale

" @

with ZQ define by (10) was calculated for every test.

3.3. Special case: no twinning, no measurement errors
If the twinning and measurement errors are absent close formulas (9-10) exist for the probability
distribution and parameters a and f. This may be used to check the developed numerical procedure

(see section 4 below) for estimation of & and 8 parameters as well as to check the extent the generated

N
{H;}”}. 1 values are consistent with the theoretical distribution. Results of three such tests carried out
j=

for different A -ratio occupy the first three lines in table 1. It is worthy of noting that though for weak
reflection (test 3) the a” and B” parameters are different from the theoretical ones but the
consistency of sample data with the found distribution is not worse then when using the distribution
with theoretical parameter values. The number of bins, ){2 value and confidence p are 31, 26.0 and
0.72 correspondingly in the last case.
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3.4. Conventional maximum likelihood: no twinning, measurement errors present
Tests 4-6 were performed for the case when twinning is absent, but experimental errors are present. In

this case Hcalc(s) coincides witth””(s). The goal of these tests was to estimate to what extent

distributions (11) may be used in conventional ML-refinement without explicit corrections for
measurement errors. The results support an idea that in refinement (13) these errors are taken into
account implicitly be means of changing of the @ and 8 parameters.

3.5. Common case
Tests 7-9 included both a twinning and measurement errors. For strong and medium reflections the

distributions (11) describe well sample data H** (s) For weak reflections (A <1) results are worse

(test 9). Nevertheless the visual comparison of graphs in figure 1c shows that at “qualitative” level the
difference is not too dramatic and these distributions could be used for weak reflections as well.

4. Maximum likelihood estimates of the distribution parameters
A problem we meet in these tests is how to define the parameters of distribution (17) that makes it the

N
most consistent with sample data {H;’bs}. - Formally, this problem is a particular case of a more
j=

general problem studied in (Lunin & Skovoroda, 1995) where sample data were supposed to have
different probability distributions (with different Hj‘.'”lc values) linked through the common ¢ and f

parameters. Nevertheless, this particular case is a “singular point” of the more general approach as some

=) (1)) ) »

is equal to zero if all Hj‘.'”lc are the same. This requires a separate study of the problem.

4.1. Normalisation of variables
First we rewrite the problem (17-18) using a more convenient for analysis notation. Let the raw

moments of the sample data {H;’bs};v:l be
obs 1 N obs obs 2 obs 4
BI=<H >=NEHJ ’ Bz=<(H )> B4=<(H )> (23)
=
where <> means the arithmetic mean, i.e. for any function 1/1([—[) we define
obs 1 N obs
(w(#™))- ﬁzlw(Hf ) - (24)
=

N
If at least two observation in the set {H;’bs} _, are different, then
j=

B,-B = <(H” —<H”b5>)2> >0, 05)

so that
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B—12<1 i<1

B @

Let normalised variables be

cale obs
. ,_aH o H
= |—, = =

AN N @)

then the maximisation of the likelihood (17-18) is equivalent to minimisation of the function

Q(u,t)=—21nu+u2+t2—<lnlo(2utz””‘y)>, u=0,t20. 28)

(The statistical weight g(s) is included into £ parameter in this case).

4.2. The minimum of Q(u,t) at the border of the allowed region
Let study first the behavior of function Q(u,t) at the border of the allowed region u =0,f = 0. This
function tends to infinity if # — 0. Using an asymptotic expansion

1
lnlo(x)=x—51nx+... , X —> +00 (29)

we get for large values of the product ut

2 2
Q(u,t)=(t—\/%u) +(1—§—1)u2+.“ . ut— +0, (30)
2 2

so that Q(u,t) function grows to infinity if # or ¢ parameter grows. If £ = 0, then the function

0(1,0) = 2 1nu + v’ 31)

has the unique minimum at u =1. As a result, the minimum at the border of the allowed region
(including infinity) is attained for (u,t) = (1,0).

4.3. Stationary point equation
If a minimum is attained at some inner point, then at this point one has

@=—%+2u—IA(ut)=O
Ju u
32
i—?=2t—uA(ut)=O 32

where the function A(x) is defined as

e 1 (ZZO}’S x)
A(X) =(2z% I:)(Tobsx) . (33)
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Multiplying the first equation in (32) by u, the second by ¢ and taking the difference we get

w-t'=1, u=+1+t (34)

The second equation in (32) may be used now to get the necessary condition for the point of the
minimum

W(t)= 2t—\/1+t2A(t\/1+t2 ) =0

(353)

4.4. Uniqueness of solution of W(t)=0
We have lI»‘(O) = () and using the asymptotic

I,(x) 1

=l-—+... , x—=>+x

1,(x) 2x (36)

we get
Bl
W(t)=2(l—ﬁ)t+... , t—>+» (37)

so that (due to (26)) IP(t) increases for large ¢. As a result we have two alternatives possible

. IP(t) increases starting from ¢ =0, so that ¢ =0 is the only solution of the equation (35); this
means that the global minimum of Q(u,t) is attained at (1,0);

. ‘P(t) decreases first, then grows to infinity, so that it exists a second solution of equation (35)

corresponding to the global minimum.

To resolve this alternative it is necessary to study the vicinity of the point ¢ = 0. Using the asymptotic

Il(x)=lx—ix3+... , x—0

I(x) 2 16 (3%)

we get

(39)
It follows from the last formula that
e if B> 2822, then ¢ =0 is the only solution for equation 1P(z)= 0 and the global minimum of
Q(u,z‘) is attained at u”" =1, = 0; correspondingly a” =0, =B, = <(H"l")2>;
 if B, <2B;, then the equation W(z)= 0 has non-zero solution ¢”' and the global minimum of
Q(u,t) is attained at ( 1+ (t"‘”)2 ,t”"”); parameters a”’, %" are defined in this case as
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4.5. Solution of the equation W(t)=0
Due to non-monotonic behavior of function ‘P(t) we used a zero-order method (without of the use of
derivatives) to solve it. Nevertheless any other method can be used as well with necessary precautions.

5. Switching in the likelihood function

, 2
Let denote J;.’}” = (H;’bs) , then the switching condition B, < 2322 may be written as

(=) )<ty a

Variance(J "l”) < rnean(J "bs) : (42)

The obtained condition means that the likelihood approach suggest to use a simple (Wilson) distribution

to describe the observed values instead of a more complicated distribution (17), if deviations of

Ptheor (H) —

intensities J°* from the mean are too large (more then the mean intensity value). To some extent we

can interpret this as the likelihood function indicates that the calculated H“"from a partial model is too
unreliable and should not be used. Such switching is a rather typical feature of likelihood functions used
for refinement or evaluation of atomic models in crystallography (Lunin, 1982; Lunin & Skovoroda,
1995; Lunin et al., 2002).
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Abstract

TLS model of a rigid-body harmonic displacement introduced in crystallography by Schomaker &
Trueblood (1968) became a regular tool in macromolecular studies and is a part of most of modern
refinement packages. There are a very large number of publications relevant to TLS and explaining its
different aspects. However, these publications typically lack the details essential for understanding how
the TLS model actually works, or contain too much of the formal mathematical details that are difficult
to comprehend for readers without advanced mathematical background. In these notes we do not
present any new development of the TLS model. Instead, we consider many simple examples that
illustrate important features of the model. Using these examples, a general case is studied resulting in
the widely known formulae. Simplified formulae are given for several special cases that may occur in
macromolecular modeling and refinement. We believe that these notes may be useful for individuals
who want to understand the basics of TLS modeling and not just use it as a “black box”, as well as for
crystallographic software developers wanting to implement some specific features described here.
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1. Introduction

Crystallographic modeling of uncertainties in atomic positions uses different kinds of parameters. Some
of them describe the same phenomenon with different accuracy; an example is isotropic or anisotropic
atomic displacement parameters (ADP). Other parameters describe these uncertainties at different
levels, such as individual atomic vibrations inside an atomic group or a thermal motion of this group as a
whole (see Afonine et al., 2010 and references therein). In this sense, one should not consider an atomic
group motion only as a way to reduce the number of parameters to work at low resolutions but as a way
to better describe uncertainties in atomic positions.

Modeling a rigid group motion is based on the fact that any displacement of a rigid body may be
considered as a superposition of a rotation around a given axis and a translation (see, for example,
Goldstein, 1950). Eventually, these two motions may be correlated. When a rigid group oscillates, that is
moves around its mean position, the term ‘libration’ is used instead of ‘rotation’ as it has been
introduced in crystallography by Cruickshank (1956b). In what follows we stay within a harmonic
model approximation that assumes small atomic displacements.

While some procedures to model harmonic rigid-group displacement and refine corresponding
parameters have been suggested previously (see for example Pawley, 1963, 1964) nowadays the TLS
model of a rigid-body harmonic displacement (Schomaker & Trueblood, 1968) is the mostly used one.
Here T, L and S stand for 3 matrices describing translation, libration and their correlation (screw-
rotation), respectively. It has been demonstrated that TLS modeling may provide reasonable results
even for larger-scale vibrations (see for example Painter & Merritt, 2005). This ability to cover a broader
vibrational range is considered a powerful feature of this modeling, although the results obtained at
such inappropriate conditions should be interpreted with a caution.

There is a lot of literature about TLS modeling such as Johnson (1970, 1980), Scheringer (1973), Dunitz
(1979), Stuart & Phillips (1985), Howlin et al. (1989), Tickle & Moss (1999), Winn et al. (2001), Painter
& Merritt (2005, 2006a), Coppens (2006), Zucker et al. (2010) and references therein. The goal of this
article is to give some technical details and practical computation schemes that are not available in the
referenced above articles. Also, some specific cases are discussed (such as a TLS modeling with a fixed
axis) that can be directly used in crystallographic structure refinement as an alternative to a traditional
group ADP refinement. Differently from many articles on the subject, we try to keep all derivations and
formulae at the basic level of the mathematics permitting most of readers to understand and reproduce
them easily. We progress by short sections from easier specific cases to more complex and general ones.

2. Description of motion

2.1. Atomic displacement parameter (ADP)

A crystallographic atomic model represents not only time- and space-averaged positions r, of atoms

but also the uncertainties in these positions. These uncertainties result in blurring of atomic peaks in the
Fourier maps and are characterised by atomic displacement parameters, ADP, also known as B-factors,
isotropic or anisotropic. To simplify the analysis we suppose that all unit cells of the crystal have exactly
the same structure and all uncertainties in atomic positions come from harmonic atomic motion only (as
opposed to anharmonic large-scale motion resulting in distinct alternative conformations typically
modeled using occupancies).

More formally, let’s suppose that there is a Cartesian coordinate system with the origin O and the three
orthonormal basis vectors i, j,k (the vectors are orthogonal to each other and are of a unit length). A

position of an atom n at a moment ¢ is defined by the coordinates (xn,yn,zn) of r, in this coordinate

system (e.g. the PDB coordinates) and by the coordinates (qnx (1),9,,(1).q,. (t)) of an instant deviation
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q, (¢) from r,. The electron density in each point r, +(, is proportional to the frequency (probability)
p,(q,) characterizing the occurrence of the atom in this point. When (qnx,qny,qnz)are small, the

logarithm of this probability, considered as a continuous smooth function, can be expanded into the
Taylor series on these coordinates. When this expansion is done around a peak of the distribution, i.e.
the most frequent position, the linear terms of this expansion are equal to zero as they correspond to the
gradient of this function. (Remark: For a development around the mean position the linear term of the
Taylor series does not necessarily vanish. For an atom in a single conformation it vanishes because this
mean position can be expected to be close to or coincide with the most frequent value. For an atom in
several alternative conformations such an expansion is done around each peak independently resulting
in individual ADPs for each conformer). In a harmonic approximation, we have this expansion up to
quadratic terms

p,(@=p,(q)= (2.1)

= &, expla, g’ + 40 + @, g7 +20,,9.q, +20,.q.9. +2¢,.4,4. )

Non-harmonic approximations are discussed for example in Trueblood et al. (1996) Coppens (2006)
and references therein. Expression (2.1) can be put into a standard form where the coefficients of the

quadratic function of the atomic coordinates are presented by a symmetric matrix Un_l

~ -3/2 -1/2 |
P.(a) = (27)”"(detU, ) eXp(— S U,,lq) (22)
(see for example Trueblood et al, 1996). Here and in what follows the vector of instant deviation ( is
q
presented by a column vector of its coordinates |¢, | and 7 stands for transposition,
q.
q.
(qx,qy,qz) =| 4, . The matrix Un is defined as (see for example Cruickshank, 1956a and references
4.

therein)

0. (02)  (9u9) (4udn)

U,=(0,4,)=( | 4 (qnx d, qnz) | (4an) (an) (4n9.) 2.3)

9, (9ue) (andn) (i)

In (2.3) the symbol < > means the time average and index n in U, means that each atom is related to its

matrix of displacements. This matrix is non-negative definite, i.e. (qTUnq) = () for any vector (.

If a group of atoms moves together oscillating as a rigid body then atomic displacements q, for

different atoms are not independent but are expressed through some common parameters and the
corresponding U, also can be expressed as a combination of several common matrices. Here we are
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going to show corresponding relations and their derivation. Obviously, such a description of an atomic
group as a rigid body is only an approximation; this problem and ways to take next-level details into
account were discussed for example by Johnson (1970b), Scheringer (1978b,c), Schomaker & Trueblood
(1984), Dunitz et al. (1988), Biirgi (1989), Moore (2009) and others.

Obviously, a physical phenomenon - the probability of atomic displacement q, in the crystal - is
invariant with respect to the mathematical description used to describe it. This means that if we change
the coordinate system, the coordinates of q, change, so the matrix U, should change accordingly,

following some rules. Appendices A1 and A2 remind these basic rules, without going into advanced
definitions of quadratic forms, tensors and other mathematical entities.

2.2. Rotation axes and their parameterisation

To define a displacement of a rigid body with respect to its original position, one needs to know a
translation vector, a rotation axis and a rotation angle. An axis may be characterised by a unit vector I =

(lx,ly,lz) along it and by a point w = (wx’wy’wz) that belongs to the axis.
In order to define a position of the rotation axis parallel, for example, to the coordinate axis k (figure
2.1a), two parameters are sufficient. For example these may be Cartesian coordinates of the point w =

(Wx,Wy’O) in which this axis crosses the plane Oij. Alternatively, these may be polar coordinates R and

a of this point. Note that
with such a choice Ow by
construction is normal to k
and therefore w is the
closest to the origin O
among all points of the axis.

For an arbitrary axis I that
passes through the origin O
(figure 2.1b) two
parameters are sufficient
to define its direction. For
example these may be two
polar angles: the angle vy
between I and the k axis
and the angle ¢ between i
and the projection of I into
the plane Oij.

To fully define an axis in an
arbitrary position and not
crossing the origin O
(figure 2.1c), two
parameters are required
for its orientation, for
example ¥ and @ as above
and two more for its
position (1 defines
unambiguously the plane

Figure 2.1. Schematic illustration of the definition of a rotation axis 1. (a) Axis
parallel to k; its position is defined by 2 parameters, either by wy and wy, or by R
and a. (b) Axis in an arbitrary orientation crossing the origin; its orientation is
defined by 2 angles. (c) Axis in a general position; n is the vector parallel to I and
crossing the origin; the plane normal to n and I is in grey. Similar to (b), two
parameters are sufficient to define orientation of n and I; to define the position
normal to it and containing  of | two more parameters are required as in (a); they are coordinates of the
the origin O; in this plane intersection w of I with the ‘grey’ plane. (d) Normalized Ow and I are considered
as the rotated i and k; p is the distance |Ow|.
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the two coordinates, Cartesian or polar, of the point w in which I crosses the plane define its position).
Obviously other points w may be chosen as discussed later.

Alternatively, the sufficiency of 4 parameters can be understood as following. Let w be a point on the
rotation axis I such that the vectors I and Ow are orthogonal; in other words w is in the plane normal to /
and crossing the origin (figure 2.1d). Then three Euler angles are sufficient to describe the orientation of
Ow and I (for example a rotation of the base vectors so that rotated i coincides with w and rotated k
coincides with I) and the forth parameter is the shift p of the I axis along the direction Ow.

2.3. Rotation: linear approximation

When considering a libration of a body around a given axis, a displacement of each point may be
expanded in series on the rotation angle 6. Eventually, high-order series may be considered; see for
example, Johnson & Levy (1974), Johnson (1980), Coppens (2006) and references therein. Tickle & Moss
(1999) mentioned that “The harmonic model is applicable only if the motion is purely translational, but
provided the libration amplitudes are not too large it is a good approximation”. Cruickshank (1956c) gave
a value of 8° (0.14 radians) for the oscillation amplitude as a limit of this approximation.

In particular, working with small libration amplitudes means that a displacement towards the rotation
axis is of a next order of magnitude than the displacement normal to the axis. For example, when the
body is rotated around the coordinate axis k by an angle §, the point r with the coordinates (1,0,0) gets
the coordinates (cosd, sind, 0). Replacing the exact displacement (cosd-1, sind, 0) by its linear
approximation v we neglect all terms starting from 62 in the Taylor series for cosine and sine, and the
approximate coordinates of the shift are

(cosd,sing, 0) - (1,0,0) = (0,6,0)=v (2.4)

More generally, for small angles § any point positioned at the distance R = 1 from the rotation axis is
displaced by a distance d * Rd = ¢ (in radians). In these notes we use this parameter d instead of J to
define the rotation amplitude.

Also within a linear approximation, the point (x,,0,0) as well as (x,,0,z,) are shifted by the vector (0, x.d,
0). Similarly, the point (0,yn,z,) is shifted by (-y.d, 0, 0) and a general-position point r, = (Xn,Yn,2s) is
shifted by

Q0 % Vo = (-yad, %o, 0) = d[k xr, | (2.5)

where x is a vector cross product.

For a rotation around an arbitrary axis I crossing the origin, a linear approximation v, to the
displacement qn of a point r, may be expressed as

v, =d[ixr, ] (2.6)
The latter is often presented in an equivalent form
v, =dA,l (2.7)

with the matrix

0 z -,
A =|-z, 0 X, (2.8)
Y. -x, 0
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Figure 2.2. Three examples of possible combinations of a rotation (blue arrow) followed by a translation (red
arrow) corresponding to the same transformation. The dashed lines show the rotation radius and indicate the
rotation axis, always perpendicular to the plane of the page. Left image: the axis crosses the origin. Central image:
the axis crosses the final object; corresponding translation is smaller than at the left image. Right image: the same
transformation is presented as a pure rotation.

expressed through the Cartesian coordinates (xn,yn,zn) of the point I’y in the coordinate system

defined above (section 2.1). If I passes through a point w = (Wx,wy,wz)and not through the origin O

(see for example section 2.2), vector v, becomes
v, = d[lx (r - W)]= d[lxrn ]— d[lxw]= dA,l - dl xw (2.9)

Here I x w is a given vector, the same for all points of the oscillating rigid body; on the contrary dA4, [ is

point-dependent in the same fashionas 4, .

One can note that (2.9) presents a rotation around an axis in a general position as a rotation around an
axis at the origin followed by a translation — dl x w common for all points. Inversely, a rotation around
an axis at the origin (or at any other point) followed by a translation normal to this axis can be always
presented as a pure rotation by the same angle. The position of this rotation axis is unique. Figure 2.2
inspired by figure 2 of the TLSView Manual (Merritt, pymmlib.sourceforge.net/tlsview/tlsview.html )
illustrates this fact.

2.4. Choice of the point at the axis

Obviously, the shift (2.9) is independent of the choice of the point at the rotation axis L. If we substitute a
point w by another point w' = (W/Y , W; , w; ) at the same axis, this gives:

v o =dlix(r, -w)]=d[Ix(r, -w+w-w)]|=

=d[tx(r, -w)]+dlix(w-w')]=d[Ix(r, -w)]=v (2.10)

n
since w —w' is collinear to [.
2.5. Non-linear effects

The (omitted) second-order term in the development of the libration-based shift (2.5) into the Taylor
series on the rotation angle corresponds to the displacement toward the rotation axis. This term is
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responsible for two effects. The first one is the curvature of electron density for individual atoms that
appears as “banana-shaped contours” (Howlin et al, 1989); some authors use the term “boomerang
shape”. To the best of our knowledge such effects were not reported in practical macromolecular
studies.

The second effect is a shrinking of an apparent bond length, the distance between the centers of two
covalently linked atoms as we see them in the electron density maps (obviously, of a high enough
resolution), in comparison with the actual bond length. This problem was discussed by Cruickshank
(1956¢, 1961), Busing & Levy (1964), Schomaker & Trueblood (1968), Scheringer (1972a,b), Stuart &
Phillips (1985), Dunitz et al. (1988). Similarly, Scheringer (1978a) and Haestier et al. (2008) discusses a
modification of apparent bond angles. Cruickshank (1956c) and Haneef et al. (1985) estimated the
bond-length correcting value as 0.010-0.015 A. Howlin et al. (1989) showed some larger values, up to
0.06 A. Interestingly, Burns et al. in 1967 wrote that “... it has become fairly common practice at the end of
a molecular crystal structure determination to analyze the anisotropic temperature parameters on the
assumption that the molecule is rigid. Often the purpose is no more than the correction of bond lengths...”.
Such examples can be found in Becka & Cruickshank (1961), Birnbaum (1972), Downs et al. (1992),
Steiner & Saenger (1993), Dunitz (1999).

In these notes we stay within a linear approximation (2.5-2.9).
3. Special case 1: rigid body translation

The simplest case is a pure translational motion, ie. an oscillation of a rigid body without rotation
compound. For such a displacement all points of the body are shifted by the same vector q, = u. For this
particular motion we introduce a special notation for the matrix U, the same for all points of the group:

() ) )

U,=T= <uxuy> <u;> <uyuz> (3.1)
() () ()
By definition, T is symmetric and therefore is defined by 6 elements, 3 at the diagonal and 3 off-diagonal.

Also by definition T is non-negative definite, therefore it has three non-negative eigenvalues
corresponding to three mutually orthogonal eigenvectors. In the basis composed of these normalised
eigenvectors iy, ji, K, matrix T becomes

(#) 0 0
T.=| 0 (1) 0 (3.2)
0 0 ()

with the eigenvalues at the diagonal. They are variances of the displacement along these three new axes.
Zero off-diagonal elements mean that these displacements are non-correlated with each other and that
they can be used as three new parameters of the problem. Note that for an isotropic translational

displacement with <t§> = <t2

y> = <l‘22> the matrix 7' is diagonal in any basis.

Since both the basis (i, j,k) and the basis (i[ ,),.K, ) are orthonormal, the transformation between them

can be only a rotation. The corresponding transformation matrix R, (see Appendix A1) can be defined

by three rotation angles (see for example Urzhumtsev & Urzhumtseva (1997) for various
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parameterisations used in crystallography for rotation matrices). Together with <t§>,<t;>,<t§> this

makes the total number of parameters to be equal to 6 as above.

It follows from Appendix A2, coordinates (tx, ty, t;) of a shift u in the basis (i[,j[,kt)are linked to its

coordinates (ux, Uy, U) in the basis (i, j,k) by relation

u.\’ tx
u, =R |t, (3.3)
uZ Z‘Z

and the matrix T in the initial base is
T=RT R’ (3.4)
4. Special case 2: rotation axis parallel to k

4.1. Rotation around k axis

Now we consider a pure rotation of a rigid body with no translation component. For simplicity, we start
from a rotation by a small angle 6 around the axis k. As previously, if d; is a random value for a shift of a
point at a distance equal to 1 from Kk (section 2.3), its probability distribution defines a corresponding
shift qn ® vy = (-ynd,, xnd;, 0) of a point ry = (xn s Vo2, ) giving its matrix U (2.3) as

(@) (duty) (9u4.) ild)y  —xy,(dZ) 0
Uy=| (Gudn) (@o) (andu) |=| —x2 (&) % (d) 0
(0.9..) (9n2) (42 0 ° 0
y. =Xy, 0
=<dzz> -X,y, xj 0 (4.1)
0 0 0
The same results can be also obtained as
0 0 O
Un=<qnq;>=<(dZAnk)(dzAnk)T>=<denkk’A,f>=<df>An 0 0 0 |A (4.2)
0 0 1

For any atom in the rigid group the elements of the matrix in the right hand of expression (4.1) are
actual atomic coordinates (as found in PDB file, for example; a better choice will be discussed below)

and the random displacement of the rigid group is presented by a common factor <d22> that shows the

amplitude of librations.

4.2. Roation axis parallel to k
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When the rotation axis is parallel to k and passes through a point wk = (Wi‘,wf ,O) different from the

origin, the corresponding shift (section 2.3) is

q,~V,=dAk-dkxw=d Ak-dWk=dAk+dW7k (4.3)
with
0 0 -w
w,=0 0 w (4.4)
w'y‘ -w 0

Here matrix ¥, is introduced similarly to matrix 4, in (2.6)-(2.7), section 2.3. Similarly to (4.2),
expression (4.3) leads to

U - (4.5)

=(d YW (KK )W, +(d*) A, (k") A7 +(d*) A, (K" )W, +(d )W/ (kk") AT

Here
000
Kk =|0 0 0 (4.6)
0 0 1
and
0 0 0 00 w
Kk'W, =0 0 0| , WKk =|0 0 -w! (4.7)
wy —wy 0 00 0
W f  —whwt 0
WKk, = |- wiwt (W f 0 (4.8)
0 0 0

The first term in (4.5) is independent of the point wk and corresponds to an apparent translation even
when it was no translation in the initial description of the motion (see section 2.3 for similar examples).

5. Special case 3: rotation around k correlated with translation

5.1. Several examples

When in addition to the rotation around k (section 4.1) the body is undergoing a translation as
described in section 3, the total distribution of the displacement of each atom depends on the
correlation between rotation and translation, as well as on the direction of the translation. We start
from a couple of simple illustrations. The displacement distribution can be represented by a surface on
which the points have the same probability distribution; for harmonic oscillations this surface is called a
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Figure 5.1. Schematic illustration of a libration around the vertical axis (an arrow at the center of circle) and a
random translation. The motions are uncorrelated in the rotation plane (horizontal). Ellipses show surfaces of
atomic displacement with the same probability. (a) The rotational displacement (blue) and translational
displacement along the rotation axis (red) are uncorrelated; main elliptic axis is horizontal. (b) The displacements
are positively correlated; the main elliptic axis (black bold) is in the plane formed by blue and red arrows and
follows a right-hand helix. (c) The displacements are negatively correlated; similar to (b) but the main elliptic axis
follows a left-hand helix. See Section 5.1 for more detail.

thermal ellipsoid.

Let’s suppose that the translational displacement is isotropic. When rotation and translation are not
correlated, the thermal motion ellipsoid in our example has one axis parallel to the axis k and two other
axes normal to it (figure 5.1a).

When the displacement (— v,d_,x,d. ,0) of a point (xn,yn,zn) due to rotation is coupled (correlated)
with its shift (0,0, szdz) along the rotation axis, the total linear displacement (— yndz,xndz,szdz)
approximates an arch of a helix. The parameter s, defines the slope of the trajectory with respect to the

axis (figures 5.1b, c).

A superposition of a rotation and a correlated displacement in the direction normal to the rotation axis
generates an apparent rotation axis shifted with respect to the original one, as discussed above in
section 2.3. As an example (figure 5.2), let’s consider again a rotation around the k axis, that generates

Figure 5.2. Schematic illustration of a correlation of a rotation around an axis k normal to the projection shown
and a translation in the direction j. (a) displacements due to rotation (linear approximation, blue arrows) and
translation (red arrows) are shown for several points; (b) total displacement (black arrows) and the shift of the
rotation axis to its apparent position O’. See section 5.1 for more detail.
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the shift (— v,d_,x,d. ,0) for the points (xn,yn,zn). If additionally we add a translation (O,Sydz ,0),

where s, is some number, the total shift becomes (— yndz,(xn +S, )dz ,O). This corresponds to a

rotation around the axis parallel to k and crossing the point (— s, ,0,0).

5.2. Screw axes along k

Let us analyse a screw rotation around an axis k more formally. As discussed in the previous section, the
corresponding displacement of a point (xn s Vs Z, ) is

q,=(-yd . xd sd)=dAk+sdk (5.1)

The component s_d K is the same for all points of the rigid body and it is a translation component of

the group. Accordingly (2.3) the matrix U, is
U, =52 (d?)(ik") + 4, (d? Y (k™) AT + 4, (s, (d2 Ykk" ) + (s (a7 )k") 4] (5.2)

One may note a similarity between (5.2) and (4.5). The first term in (5.2) is independent of the atomic
coordinates and stands for the translation of the group. The second term depends, through matrix 4 ,
on the atomic coordinates quadratically and corresponds to the group rotation. Two last terms in (5.2)
depend on atomic coordinates linearly and are due to the screw component. Following Schomaker &
Trueblood (1968) we associate these terms with the matrices 7', L and S that we define here as

0

T=[0 0 0 (5.3)
0 0 s2(d2)
0 0

L={0 0 0 (5.4)
0 0 (d2)
00 0

S=[0 0 0 (5.5)
0 0 s.(d)

With these matrices,
U, =T+A4L47+4,5+(4 ) (5.6)
5.3. TLS presentation

Now let’s generalise the examples of sections 5.1 and 5.2. We keep the same notation and use u for
translational displacement (section 3) and v, for the displacement due to libration, always in a linear
approximation (section 2.3).

For an atom n presented by its Cartesian coordinates (xn,yn,zn) in the same basis as above the total
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displacement vector
q,=u+v, =u+d Ak (5.7)

has the coordinates

Q) (W) (~2ud) (u-2,d.
9, |=|u, |*+| x,d. |=|u, +x,4d. (5.8)
QVIZ uZ 0 uZ

where d_, as previously, defines the linear approximation (O,dz ,O) to the displacement of the point

(1,0,0). Note that it follows from section 5.2, translation vector u may include the screw component and
therefore be correlated with the rotation. Components of the matrix U, (2.3) in the same coordinate
system (i, j, k) are:

(1232 ()23, ()

Unxx = <(ux - ynd7)2> - <Mi * yid? a 2ynuxdz>

U,, = <(uy + xndz)2> = <u§ + xjdf + 2xnuydz> = <uf>+ X2 <df> +2x, <uydz>

(uy +x,d, ) uz> = <uyuz + xnuzdz> = <uyuz > +X, <uzdz> (5.9)
Similarly to section 5.2, we can obtain the TLS presentation
U, =T +A LA +AS+S"A’ (5.10)

similar to (5.6). Currently,

() ) )

Ir=U, = <uxuy> <u;> <uyuz> (5.11)
uu, <uyuz u
0 0 O
L=10 0 O (5.12)
0 0 (d2)
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S=| 0 0 0 (5.13)

and
0 =z -y,
A, =|-z, 0 x (5.14)
Yo —x, 0

In presentation (5.10-5.14) matrices T, L and S are the same for all points of the rigid body while 4 is

expressed through the point coordinates. This presentation can be obtained either by decomposition of
(5.8) or by applying (2.3) to (5.7).

Expressions (5.11-5.13) show the 10 parameters common for the rigid group: 6, 1 and 3 parameters
associated with T, L and S, respectively. Together with the matrices 4 , they fully define U for all

atoms in the rigid group.

5.4. Origin shift

Obviously, matrices U, should not depend on the choice of the origin of the coordinate system while
matrices An do. This means that T, L, S or at least some of them, vary with the origin. Inversely, this

means that some combinations of T, L or S may correspond to the same U, but expressed in coordinate

systems with different origins. We will demonstrate this relation that is very important for further
analysis.

In a new coordinate system with the origin shifted by vector p = (px Ny )
O'=0+p (5.15)
the new coordinates are x, - p.,», — p,,Z, — p, defining the matrix
0 z-p. -bn-»)

A =|-(z,-p.) 0 X, -p. |=
vo-p, ~x, -p) 0

0z, -y, 0 p. -p
=|-z 0 x |-{-p, O p, |=4,-P (5.16)

Y =X, 0 py - Dy 0

(we define the shift vector in the opposite way as Tickle & Moss (1999) do). Matrix P in (5.16) is the
same for all points of the group. Accordingly to (5.10) matrix U, becomes

U,=T+(A +P)L(A,+P) +(A,+P) S+S"(A +P)
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=T +(ALAT + A[LP" + PLAT + PLP" ) +(A/S + PS)+(STA) + S"P")
=(T+PLP" +PS+S"P")+ A\LAT + A (S+LP")+(S™+ PL") A

=T'+ALA"+A/S'+S"A" =U,

(5.17)

(at the last transition we substituted PLA " by PL" A" using the symmetry L = L"). Comparison with

(5.10) defines new matrices T',L" and S’ as
T'=T+(PLP" + PS + S"P")
L'=L

S'=S+LPT

(5.18)

It is very important that the expressions (5.18) were obtained for a general case of matrices T, L and S in
(5.10) with no use of their specific form (5.11-5.13). A simplest example illustrating (5.18) is presented

below.

Let’'s suppose that a rigid group oscillates around the axis k.
only non-zero matrix is L (5.6) while T and S are zero.

In this case the
For the point M =

0 0 O
(0,0,0) its A4 =|0 0 O] giving zero matrix U, (a point sits at the rotation
0 0 0
axis). Now let’s choose another coordinate system shifting the origin by p =
(1,0,0). The new coordinates of the point M are (-1,0,0), its new matrix
0 0 O 0 0 O
A =10 0 -1| and matrix P=|0 O 1|. New matrices are
01 O 0 -1 0
00 O 0 0 0 0 O
S'=10 0 0 0 -If=(0 0 O
0 0 (d?) 0) [0 (aZ) 0
0 0 0\0 0 0 0 0
AS'={0 0 -1]0 0[=[0 -(d2) 0
01 00 (a2) of lo 0 0
0 0 0\0 O 0 0 0 O
T'=[0 0 1[0 0 -1=[0 (d?) 0
0 -1 0J0 0 (d?) 0/ (0 0
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00 0o O 0Y0 0 0y (0 0 0
ALAT=10 0 -1l0 0 0 [0 0 1|=|0 (d2) 0
01 0)0 0 (a2)fo -1 0f {0 0 0

New matrix Ur’l =T,+A;L,A;T+A};S,+S’TA;T is a zero matrix, as it should be.

5.5. Search for the apparent rotation axis

Applying (5.18) to the special case (5.11-5.13) of a rotation around k gives

0 0
LP" = 0 0 0 (5.19)
_py<d22> px<d22> 0
0 0 0
S+LP" = 0 0 0 (5.20)

pid’ p.p,(d2) 0
PLP" = —pxpy<dzz> p§<d22> 0 (5.21)
0 0 0

PS=| pfud.) plud) plud) (5.22)
0 0 0
T+PLP" +PS+S"P" = (5.23)
d. )- d
p;<d:>—2py<uxdz>+<uf> {px<ux z> py<uy z>} _py<uzdz>+<uxuz>

pep{d?)={uu,)

} pf<df>+2px<uydz>+<ui> px<uzdz>+<uyuz>

) {pxuxdz) -p,(u,d.)

- p.p,(d2)+ (uu,)

- p,{ud )+ (u ) poud )+ (uu.) (u)

Expression (5.23) shows existence of a special origin
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B <”xdz> _ <uyd2>
Py, = <dzz> v Py = <d22> (5.24)
that minimises the diagonal elements of 7' making this matrix equal to
) (u,d)u,d. . )u.d,
<uf> - <u<d2>> <uxuy> - <a§2>y > <uxuz> - <u <a>’<u )
<

, )
B e = B I
O e

(5.25)

The minimisation of all diagonal elements 7, Tyy ,T_ atatime can be reformulated as the minimisation

of the trace of the matrix, tr(T) =T.+T,+T, — min , which stays non-negative due to the Cauchy-
PesPysD-

Schwarz inequality. In fact, this minimisation means that the new origin is at the apparent rotation axis,

as discussed in the examples of sections 2.3, 4.2 and 5.1 (see also Schomaker & Trueblood, 1968;

Pawley, 1970; Tickle & Moss, 1999). This is also confirmed by (5.20) that becomes

0 0 0
S'=S+LH"=|0 0 0 (5.26)
0 0 <uzdz>

showing no correlation between rotation-translation displacements in the plane normal to the rotation
axis (we remind the reader that in this example case it is the axis k). The results above are independent
of the choice of p_ (a shift along the rotation axis).

Relocation of the translation component by including it into the displacement of the rotation axis is
opposite to an operation discussed in section 3: an apparent translation component for the axes
different from the coordinate ones. Comparison of (5.24) with (4.4) shows their similarity in
determination of the position of the rotation axis.

5.6. Parameters with a physical meaning

Following from section 3, one may define the elements of T through its eigenvalues (uncorrelated

translations) <t§ >, <t2 >, <t22> and the rotation matrix R, . One may note also that due to relation (3.3)

(ud.) (td.)
(u,d.)| =R, |(t,d.) (5.27)
(u.d.) (r.d.)

where <l‘xdz >,<tydz >,<tzdz> describe correlation of mutually uncorrelated random displacements (t, t,
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t.) with the displacement due to libration around the axis k and the matrix R, is the same as before.

As a next step, one may introduce the correlations

(td.) (t,d.) e - (r.d.)

—lscx=—<1,—lscy=m W

<1

N

(5.28)

as independent parameters instead of <uxdz>,<uydz >,<uzdz>, resulting in another set of parameters:

<t§>,<t;>,<t§>,<d:>, CpsC,sC, and 3 mutually orthogonal directions of uncorrelated translations

described through R, by three Euler angles; this makes ten parameters in total as previously. Such a

choice has an advantage that all corresponding parameters have a clear physical meaning.
6. Special case 4: three rotation axes parallel to ijk
6.1. Uncorrelated pure rotations

Now we will extend the analysis done in section 4.2. When a rotation axis is parallel to i or j instead of Kk,
the resulting matrix has always the form (4.5) in which /¥, and Kk" (4.4 and 4.6) are replaced by

0 w —w; 1 00
W.=|-w. 0 0 and ii"={0 0 0 (6.1)
w0 0 0 0 0

0o w 0 000
W.=|-w/ 0 w/| and jj"=|0 0 (6.2)
0 -w/ 0 000

for rotations around j, respectively.

When three rotations around the axes parallel to i, j and k with the corresponding amplitudes d,,d,

and d, are executed simultaneously the resulting shift is

qa,~v, =d Ai+d wi)+(d 4,j+d W)+ d 4k +d wk) (6.3)
For uncorrelated rotations, i.e. such that

(d.d,)=(dd.)=(d,d.)=0, (6.4)
a calculation similar to (4.3)-(4.8) gives the matrix U, in the form (5.10) with

T (6.5)
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e H@ )b fa) vl i)
S ey W) @) —ww(a?)
~w/w!(d) - wywl(d) oy Fla2)+ b F ()
(d) o0 0
L=| 0 (d}) 0 (6.6)
0 0 (d)
0 wifdr) -widl)
S=l-wi{d;) 0wl (67
W) @) o

As previously, T' corresponds to the apparent translation term, the same for all points.
6.2. Screw rotations around the coordinate axes

Following from the calculations in section 5.2, one can derive that three simultaneous uncorrelated
rotations around the three coordinate axes with the amplitudes dx,dy,dz and screw components

S.»8,,5, give U, in the form (5.10) with the matrices 7', L and §:

s2<df> 0
T=| 0 s}{d)) 0 (6.8)
0 s22<d22>
(d) o0 0
L=| 0 (d}) 0 (6.9)
0 0 (d)
s/(d?) 0 0
s=| 0 s{d) o0 (6.10)
0 0 s.(d?)

It may be useful to compare (6.8)-(6.10) with (6.5)-(6.7).
7. Rotation around an axis in a general position
7.1. Rotation around a fixed bond

A libration of an atomic group around a given axis plays a special role in macromolecular modeling
where dihedral angles are relatively flexible compared to bond angles and lengths. This may be a
libration of a peptide side chain around C.C, bond (see figure 7.1 for illustration) or, in general, a
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libration of an atomic group or a domain around a bond between two given atoms. Detailed studies of a
rotation around a bond can be found in Prince & Finger (1972), Dunitz & White (1973), Sygusch (1976)
and Schomaker & Trueblood (1998).

In this section, let’s consider a rotation around the vector g between two fixed points
G, =(G Gly,G,Z) and G, =(G2x,G Gzz)' thus g being fixed as well. In figure 7.2 point Gi

x> 2y°
correspond to C. and Gz corresponds to C, when the peptide group is fixed. It is trivial to express a unit

vector [ = (lx ,ly ,/_ ] along the rotation axis through the coordinates of the two chosen points:

g= (gx’gy’g2)= (sz _Glx’GZy _Gly’GZZ _Glz) (7.1)

I=-gl|g|=g/\gl+g5 +g: (7.2)

The point w at the rotation axis can be taken for example as

w=(wx,wy,wz)=(Glx,G1y,Glz) (7.3)
We remind that the result is independent of the choice of a point at the rotation axis, see section 2.4. We
remind the reader also that 4 parameters and not 6 (coordinates of the two points) are sufficient to

define a rotation axis (section 2.2).

The shift ¢, of a point (xn - ) is defined now as (see section 2.3)

qnx lx ZX lx
g, |= dA, ly —-dWw ly =dA,, ly (7.4)
qﬂZ lZ lZ lZ
where
0 W, —w,
W={-w, 0 w,
w, -w, 0
0 Z, -W, —(yn—wy)
A =|-(z,-w,) 0 X, —Ww, (7.5)
Vo =W, -(x,-w,) 0

and d is a random parameter describing the amplitude of libration. Similarly to (4.2) if in (7.4) we use

the single-term presentation through A, , the averaging of q,q’, gives
Un = <qnq;> = AnwL‘A;w = AndeA;w (76)

with

Computational Crystallography Newsletter (2011). 2, 42-84 60



ARTICLES I

AYIAN 2oL Ll
L=(d* )1 |1, | =(@)1d, 17 LL|=(d")L, (7.7)
L\ 11, 111

Here <d2> characterises the random distribution and size of the libration angle. This is the single

random parameter to be adjusted to the experimental data. As mentioned above, six fixed parameters, 4
of them being independent, are used to define matrices L ,.

In this simplest situation using the two-terms presentation in (7.4) requires more computing than that
with 4, .

7.2. Coordinate system aligned with the bond

In this trivial case of a libration around a single fixed axis a direct approach (7.5-7.7) with no
intermediate coordinate systems seems to be preferable for practical applications. However, the
procedure descried in this section may be useful to understand more complex situations.

Using matrix 4, (7.5) instead of 4 (7.4) in fact means a “hidden” change of the origin of the

coordinate system. This eliminates matrices 7" and S which are unnecessary in this trivial case. We
may further modify the coordinate system by choosing new base vectors (izajlakz ) such that the new

vectork, =/. To do so, we define the angle ¢y between / and the axis k
i = arccos (kl) = arccos (L) (7.8)

and the angle ¢ between the axis i and the projection 1 = (l [ 0) of / into the plane Oij :

xotys

[ . [
cos = , sinl = 7 7.9
(@) \/m (@) Am (7.9)

(for illustration see figure 2.1b). Now matrix

COS@COSY —sin@ cos@siny
R, =|singcosy cosg singsiny (7.10)
—siny 0 cosy

describes the transformation of the original coordinate system (Appendix A1) with the base vectors
(i, j,k) into an intermediate system with the base vectors (i, ,0;.K, ), in particular

I 0
I,|=R |0 (7.11)
1

)

z

and inversely
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0 I
0|=R"1, (7.12)
1 /

z

The coordinates in the new system are calculated from the original coordinates of a point as

x) x,-C, cosy cosep cosysing -siny\(x, -C,,
yio|=R'ly,-C, —sing cosQ 0 v, -C, (7.13)
z) z, -C,. singgcosg sinysing cosy [z, -C,.
and matrix U, (see (4.2)) is
000 v'o-xw,
U, =(d*)4,|0 0 0|47 =(d*)-xy, x (7.14)
0 0 1 0 0
resulting in (Appendix A2)
A A
U, = <d2>Rl -x\y" X’ O|RS (7.15)
0 0 0

7.3. Axis with the fixed direction

Now let’s suppose that the two points defining the libration axis / (e.g. C. and C, atoms in figure 7.1)
oscillate around their central positions. If (for simplicity) we consider the direction of the axis being
fixed (for example when the distance between the atoms is much larger than their displacements; see
figure 7.2 for another illustration), the displacement (7.4) with the definitions (7.5) becomes

Figure 7.2. Schematic illustration of different kinds of
libration axes associated with interatomic bonds. The
peptide group is considered as a fixed. The rotation axis C.C,
is a fixed axis (see Sections 7.1-7.2). The rotation axis C,C,
changes its orientation (Section 7.5). If N.C. and C.C, are

Figure 7.1. Schematic illustration of a libration

around a bond. Angle ¢ is the parameter
describing random oscillations around the bond

C.C.. A shift of each atom is proportional to its
distance to this rotation axis.

roughly parallel, the libration around C.C, translates the bond
N.C. rather than changes its orientation (Sections 7.3-7.4).

Computational Crystallography Newsletter (2011). 2, 42-84 62



ARTICLES I

qnx ux lx lx ﬁx lx
G | =|u, [+dA,| L, |-dW|], |=|u, |+dA4,|L, (7.16)
an uZ lZ lZ 122 lZ

where we introduce a new random vector, the same for all points of the rigid group

uAX ux ZX
u,|=|u, |-dW|l, (7.17)
uAZ uZ lZ

Differently from section 7.1, here the two-terms presentation is preferable and the averaging of q,q

gives a sum
U, =<qnq;> =T+A,LA +(AnS+S’A;) (7.18)

always in the same form as (5.10) where the matrix 4, in the base (i,j,k) is always (2.7) and other

matrices are

@) (@) (a)
T=|(aa,) (@) (ad.)
(ad.) (a0.) (22)
IRVIRY 2oLl L
Lo=(d* )1, |1, | =(@) 1L, 1} 1L (7.19)
L)L 11111

%]
Il
~ ‘N
<
/\Q
<>
<
~ —
Il
~~
< <
T
Q.
>
=
NG
-~
=
T
Q
>
<
N
~
<
T
[Q
>
[N
—_—

This presentation shows ten random parameters required to define U  : six independent elements of the
matrix T, libration scale <d2> in L and three parameters <dﬁx >,<dﬁy >,<dﬁz> for the correlations of the

rotation and translation components in S. All other values necessary to calculate U, (7.18) for all points

are defined through the coordinates of G1 and Gz (7.1-7.2) and the coordinates of atoms “hidden” in 4, .

7.4. Axis with the fixed direction — modified coordinate systems

As above, we can switch to an equivalent set of parameters that have clearer physical interpretation.
First, we diagonalise T as discussed in section 3.1 and get matrix R; that describes the transition (3.3)

from the common system (i,j,k) to another Cartesian coordinate system (i[ ,),.K, ) with the axes along

the three principal axes of vibration (by its construction, this new coordinate system has nothing to do
with the geometry of the rigid body but is defined by the nature of its movement). This leads to
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)

s

2
<>

=
-~
~
~

q, |=|u, |+d4, l; =R tx +dA, l; (7.20)
9. ) \&. L. L, L,
and
VA <zj> <txty> (t.t.) <t§> 0 0
T =(R|t,|t,| R )=R|{tt,) (&) (te)|RT=R| 0 () 0 R
). ) (o) (2) 0 )
1LY 2oLl 1
Lo=(d* )1, |1, | =(@®) 1L, 1} 1L (7.21)
0 1111
1((de ) L(dt,) 1(at,) 1(dt.)
S=|1, | (de,)| R =|1,(de,) 1,{de,) 1(dr.)|Rr
1\ (ar.) Ldt,) 1{dt,) L{at.)

We can also consider the Cartesian coordinate system (il,jl,kl)where Kk, is aligned with the rotation

axis, the corresponding matrix R, being (7.10). Then (7.21) can be presented as

) o

0

T =R, 0 () 0 R}
0 0 ()
000
L=(d*)R,[0 0 0 R
001
0o 0 0
S=R| 0 0 0 |r
(de,) (dt,) (ar.)
with
th=RtRl_l

(7.22)

(7.23)

Working with diagonalised matrices is more convenient and as previously shown aids in a better
understanding of parameters of the TLS model. Also, we will see below in section 7.6 that there exists a
special origin shift that diagonalises matrix S. Section 8.3 shows that in fact it is more convenient to start
from diagonalisation of L and S and only then diagonalise T.
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7.5. Libration axis that may change its direction

At the next level of generalisation we suppose that the direction of the rotation axis can vary. From now

on let's assume that the coordinates (lx,ly,lz) of the vector I be also random values. This may

correspond to a general case of a group motion and not necessarily to a rotation around a covalent bond
(see also an illustration in figure 7.2). If we introduce a new vector

d, 1\ (dl,
d=|d, |=d|l |=|d, (7.24)
d. 1) \d.

. ;ﬁ i, i, (7.25)
(i) (i) (i)

(@2) (d.d,) (d.d.)

L=|(dd,) (d}) (dd.) (7.26)
(d.d.) (dd.) (&)
(da,) (da,) (da.)

S=|\{d,a,) (di,) (da.) (7.27)
(d.a,) (da,) (da.)

Calculating explicitly the elements of U through elements of the composite matrices (7.25-7.27) and

atomic coordinates gives (we use the symmetry of the L matrix)

U =T, +z2L, +32L. ~2y,z,L, )+ 2,8, - 7,S.) (7.28)
=T+ 2L 220 -2x,z,L_)+2(x,S, -2,5,)

U, =T.+(L, +xIL, -2x,5,L, )+ 2,5 -x,5,.)

Uy =Ty + (02,00 +2,2,L, - x,3,L. - 2L, )+ (6,5, - 3,8, +2,(5,,-5,)

Uy =T +(,2,L, +x,0,L, = %,2,L, - 9L )+ 2,5, - %8, +,(5, - 5.)

u =T +(anany +x,y.L_-yzL_ —foyz )+ (ynSW -z, 5_+x, (SZZ —SW ))

nyz 2

(note the “+” sign at x,y, L _ term in the last equation in comparison with 1.2.11.5 in Coppens, 2006;

this agrees with Table 1 in TLSView Manual (Merritt, pymmlib.sourceforge.net/tlsview/tlsview.html).
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Clearly this general situation (7.25-7.27) is characterised by 21 parameters: 6 to describe T, 6 to
describe L and 9 to describe an asymmetric matrix S. It is ubiquitously pointed out in the literature (see
for example Schomaker & Trueblood (1968) or Coppens (2006)) that the linear combinations (7.28) of

the T, L and S elements use only differences between SM,SW,SZZ and not these values themselves.
Knowledge of two of these differences defines the third one. Simultaneous increasing or decreasing of
<dxﬁx>,<dyﬁy>,<dzﬁz> by the same quantity does not change U,. Some consequences of this are

discussed below in section 7.8.
7.6. Symmetrisation of S

Following from section 5.5, we will show that there exists a special origin for S which makes S
symmetric (for example see Brenner (1967)). Accordingly to section 5.4, since P is antisymmetric (see

(5.16)), P = —P and L is symmetric, L" = L, then
(s') =s™ - (LPY (7.29)

and
8y -8 =8"-8+LP-(LP) (7.30)

If with some choice of the origin matrix S’ is symmetric, the last expression is equal to 0 giving
S"-S=(LP) -LP=D (7.31)

where D by construction is antisymmetric with diagonal elements equal to zero and off-diagonal
elements equal to

D =_Dyx=prxz+pyLyz_pz(Lxx+L}y)=Syx_S

Xy xy

sz=_sz =prxy_py(Lxx+Lzz)+szyz =§.-8§ (732)

Xz zx

D,.=-D,=-p, (LW +L. )+ pL,+p.L.=S, -5,

vz

Here p ,p ., p, are unknown parameters and the right-hand expressions contain corresponding

elements of (7.27). The determinant of this system of linear equations, after insertion of the values from
(7.26), is equal to

(@) ()l ar) ) o () () (a2~ ) )
Ay )er)-(a.a.y )
s2((a?)(d;)(d?)~(d.d,){d.d.)(d,d.)) (7.33)

and is non-negative by the Cauchy-Schwarz inequality. It is equal to zero only in the hypotheticial case
of a full correlation of all three motions, a case that does not happen in practice. This means that the

system of equations (7.32) has always a unique solution. The corresponding point (px,pv,pz ) is called
centre of libration (Pawley (1963), Hirshfeld et al. (1963) Schomaker & Trueblood (1968) and
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Scheringer (1973)), “centre of diffusion” or “centre of reaction” (Brenner (1967), Tickle & Moss (1999)).

In fact, a possibility to symmetrise S is evident because it was demonstrated in case of a rotation around
the k axis (section 5.4) and because the symmetry property is conserved with the rotation of the
coordinate system (Appendix A4). This proves also that such a choice of the origin simultaneously

minimises the trace of T, tr(T — min , since the trace is also invariant with the coordinate system
PxsDysD:

(Appendix A4).

When symmetrizing the matrix S, the number of the independent elements in it is reduced from 9 to 6.
There is no contradiction since 3 ‘disappearing’ parameters are now converted into a priori unknown
coordinates of the reaction center.

7.7. T and L parameterisation

As previously, both symmetric matrices T and L can be diagonalised

t2 0 0
2 T
T=R |0 1 0|R (7.34)
0 0 ¢
d: 0 0
L=R, 0 d; 0 |R] (7.35)
0 0 d;

(see also Painter & Merritt (2006) about the diagonalisation of L). A difference with section 7.2 is that
now R, defined in (7.10) cannot be used anymore and is substituted by R, that is built from the

coordinates of the eigenvectors of L, similarly to R, (see section 3). These eigenvectors describe three

mutually orthogonal axes around which the rigid body has uncorrelated librations with the parameters
d,.d,,
directions and by three displacements corresponding to these directions. Other types of efficient
parameterisation can be suggested (see for example Pawley (1970) or Rae (19754, b)). In particular, the

parameterisation suggested by Rae allows easy and efficient introducing of constraints on the TLS
parameters.

d, , similarly to (6.6). So both T and L are characterised each by three mutually orthogonal

Ixo

7.8. S parameterisation

A non-symmetric matrix S is defined by nine its elements. However, only the differences between its
diagonal elements are used in (7.28). The relation

(5, -S.)+(s.-S.)+(s.-5,)=0 (7.36)

means that only 2 of these differences are sufficient to define U, unambiguously reducing the total
number of parameters to 20 = 6 + 6 + 8. Traditionally starting from Schomaker and Trueblood (1968)
this constraint on the diagonal elements of S is presented differently. Equations (7.28) mean that the
knowledge of U, cannot unambiguously define the diagonal elements of S and an arbitrary constant h
can be added to all of them simultaneously. The resulting diagonal elements cannot be too large since
they should satisfy the Cauchy-Schwarz inequalities
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s2 <(a2)(d?), 83, < (a})(d}), 82 < (a2 )(d?) (7.37)
Historically, the convention of setting the trace of the S matrix equal to 0,
S, +8,+S5.=0 (7.38)

is used to assert that (7.37) holds true.

Such a condition corresponds to (6.6) obtained for three rotation axes (we saw in section 6.7 above that
the three resulting axes are always mutually orthogonal). The condition (7.38) can be also understood
from the following equality:

tr(S)=(d,i,)+{d i,y +(d i) =(d i, +d,i +d.i.)
= (all [u, = (1w, = Lw, )+ dl, [u, = (L, =Lw )]+l [, = (Lw, =L, )])
=<(dlx)ux +(dl, )u, +(dlz)uz>+

(AL (L, = Low,)+dl, (Lw, =L )+l (1w, =L w,)])

=<(dlx)ux +(dly)uy +(dlz)”z> (7.39)

The second term in (7.39) disappeares because the expression in [ ]is a scalar product of two

orthogonal vectors, I and I x w. Therefore, condition (7.38) becomes
(L, )u, +(dL,)u, +(dL)u.)=0, (7.40)

a requirement that among of all possible decompositions of U, we choose that with no correlation
between the translation and rotation. This agrees with the remarks by some authors that the difficulty

of finding individual SH,SW,SZZ “arises from incomplete knowledge about the correlation of atomic
motions” (Biirgi (1989), see also Scheringer (1973)).

8. General case
8.1. Several axes in a general position

Let’s suppose now that a rigid body participates simultaneously in several librations, K in total, of
different amplitudes (see for example Stuart & Phillips (1985)). These librations are defined by axes I, k
= 1,K, by the points wy at the corresponding axis and by the elementary shifts di, due to rotations
(section 2.3). The axes are not necessarily mutually intersecting. The displacement vector v due to
rotations becomes (see (2.9))

v = deAnlk —delk XW, =A,,delk —delk xw, =dA [ -d (8.1)

Now, with d = H&H and i= a/d,both
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Z@% i
d

d= delk ~ dezky =|d, |=di (8.2)
delkz 4
and

We =Wy \( L

0
&w = delk XW, =deWklk =de ~ Wi 0 W lky -
Wy =W 0 [,

Z d,(wely ~wole )| (5
-| Y (Wl —wele )| = d,, (83)
de (Wl —wily, )| \ 9

are random vectors depending on random variables dx and on the parameters of the axes. The second
term in (8.1) is common for all points and acts as an apparent (random) translation of the rigid body
(see section 4.2). Expression (8.1) shows that a multiple-axes rotation may be considered as a rotation

IAH =1, defines the

A

around a single random rotation axis (section 7.5). The normalised vector /,

rotation axis and d is the parameter for the rotation angle as discussed in section 2.3.
8.2. General formulae

When a translational displacement complements rotations, the total displacement q, = u + v, of the
atom n at a point r,, is the sum of u and v, due to rigid body translation and libration, respectively:

J 4 i\ gy (d

QJm u)C C/iwx ux wx X X
9, |=|u, |+4, C{y - c{w = uy—cfwy +4, c{y =|u, |+4, c{y (8.4)
qZ” uZ dZ dVl/Z uZ - dVI/Z dZ 122 dZ

A

where random values are ﬁx,ﬁy,ﬁz,dx,dy,dz. For the atom n, the components of U, expressed in the

original Cartesian coordinate system (i,j,k) as (7.19) are

@) {ad,) (ad.)
T=|\(aa,) (a7) (ad.) (8.5)
@) (@,8.) (@)
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(&) {dd,) ()

L= <c?xc§’y> dj> <c;’ya72> (8.6)
(@) (d,d.) (&)
() (i) (i)

s-|(da) (aa) (ai) @
(dets) (i) ()

Equations (8.5)-(8.7) are literally similar to (7.25)-(7.27) derived and analysed previously.
8.3. Analysis of the TLS matrices

Both simple examples above and the demonstration in section 8.2 show that for all kinds of rigid-body
oscillations, considered in a harmonic approximation, the set of matrices U, for all atoms of the group
can be expressed as a sum (5.10) of four terms where T, L and S are common for all atoms and each
antisymmetric matrix A, contains individual coordinates of the atom n. Matrices T and L are symmetric
while S is not necessarily symmetric.

Now let’s suppose that crystallographic calculations, for example as discussed below in section 9, gave
us some T, L & S matrices and we want to find which rigid-body motion produces these matrices. To
answer this question several steps should be performed. We remind the reader that rotation axes that
do not pass through the origin as well as the rotation-translation correlation contribute to an apparent
translation and that these contributions should be removed properly in order to define the pure
translation component.

a) Origin shift. Shift of the origin into the reaction center p ,p , p, (section 7.6) is the solution of

the system of linear equations (7.32). The new matrices 7', L', S’ in this new coordinate system
y q s L, y

are obtained accordingly to (5.18). In this coordinate system matrix S’ is symmetric, trace of 7"
is the smallest possible; both these properties are retained in further rotation of the coordinate

system (Appendix A4). Obtain new atomic coordinates (x;,y; ,Z;) by subtracting (px,pv,pz ) ,

r}; =r, —P. In fact here and later we do not need atomic coordinates for the T, L, or §

interpretation; the transformation is done simply for completeness.

b) Diagonalisation of L. Find 3 non-negative eigenvalues of matrix L' and three mutually

orthogonal eigenvectors; rotation matrix R, (7.35) is composed from the coordinates of these
eigenvectors. Choose a new coordinate system with the new axes along the three eigenvectors;

R, is the transformation matrix to this system. Recalculate the matrices L" = R,L'R} (7.35),
T" = RdT'R;, S" = RdS’R; and new atomic coordinates as r,;/ = R;]r; = R;r}; in this new
system (Appendices A1-A2). In the new coordinate system matrix L" is diagonal with the
elements L;,L:;,LZ”Z. The rotation axes are parallel to the new coordinate axes and pass

through the points (O, va , wi ), (Wi ,0,w/ ), (Wf , Wf ,0) to be defined.

c) Position of rotation axes. Obtain estimates Jﬁ«’LZx , c?y=1/L)"y ) c?z= L! (6.6) of the
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d)

g)

rotation parameters around the three axes defined at the previous step; calculate the positions
of the rotation axes (4.16):

" " " " " "
i S)cz i Sxy j S}’Z j Syx k Szy k Szx

Wy = _L/r 4 wz = L// ’ Wx = L// 4 Wz = _L// ’ wx = _L// ’ Wy = L// (88)

XX 4

XX

Contribution of rotations to T due to axes displacement. Calculate contribution (6.5) of the
rotations to the translation of the group due to the displacement of the axes

\2 2 o
J " k " k.  kyn YN
(Wz ) Lyy +(Wy) Lzz _WnyLzz _WszLyy
k krn i 2 " k 2 n i irn
AT = - Wx Wy LZZ (WZ ) LXX + (Wx ) LZZ - Wy WZ Lxx
. P - \2 \2
J jr" 1 2 n ) n J n
-wiw! LW - wyszu (wy ) L.+ (wx ) LW
; (8.9)
the residual translation matrix after removal this contribution is
m n
rm=1"-A; (8.10)

Minimisation of correlation between translation and rotation. Calculate the trace

rS"=8" +S;’y +S” of S” and get a new S (section 7.8) with the minimal correlation

between translation and rotation (7.40)

KurS" 0 0
S=S"-| 0 4uS" 0 (8.11)
0 0 YtrS"
5 _ S, J
Contribution of screwing to T. Obtain estimates s =—-, SY:ﬁ' §,=—- of the screw
xx W zz

parameters (6.9)-(6.10) following the rotation axes currently aligned with the coordinate axes;
remove the contribution of the screwing from the translation matrix (6.8) :

0
0 (8.12)

The resulting matrix 7' stands for the pure translation of the rigid group with the contribution
of other movements removed.

Three uncorrelated translations. Find 3 non-negative eigenvalues of matrix 7 and three
mutually orthogonal eigenvectors (section 3). The three eigenvectors give the directions of the
uncorrelated translations and the corresponding eigenvalues are means square displacement
along these axes. Do not forget that these vectors are given in the coordinate system with the
axes parallel to the rotation axes and not in the original one.

Computational Crystallography Newsletter (2011). 2, 42-84 71



ARTICLES I

9. Search for the optimal TLS decomposition
9.1. Optimal TLS decomposition and refinement with TLS

Summarizing the analysis above, we conclude that for all kinds of harmonic oscillation of a rigid group,
the matrices U, for all its points can be presented as (5.10) through three common matrices T, L & S

and through matrices A4, specific for each point. Sections 3-8 above show how to calculate the

contribution U, of a rigid group motion into atomic displacement parameters U, of the

corresponding atoms when the movement is known. A frequent task (see for example Sternberg et al.

(1979)) is the inverse problem: given a set of matrices for a group of atoms (let’s call these matrices l7n,

differently from U, that are matrices calculated from the atomic parameters), present them in the TLS
form considering that this group oscillates as a rigid body, ie. find all the elements of the three
composing matrices (8.5-8.7) reproducing as close as possible the whole set of l7n. We may note that

such a problem is important not only for their a posteriori analysis (see for example Holbrook & Kim
(1984), Kuriyan & Weiss (1991), Stec et al.(1995) while some more applications can be found in the
additional list of references) but also to obtain initial values of TLS parameters for their further
refinement as discussed below.

The problem of decomposing the set of 17,1 into TLS (find TLS such that the corresponding U are close
as much as possible to 17,1) is more complicated in a real situation when the matrices 17,1 contain
contribution of individual (independent) atomic vibrations U, , and other contributions and errors,

when rigid groups are an idealisation and when a composition of these rigid groups is a priori unknown.
Looking for optimal values of the TLS parameters means to minimise some target function with respect
to these parameters. Here we do not discuss how to decide which atoms belong to which rigid group.
This problem was studied by, for example, Winn et al. (2001) and Painter & Merritt (2005, 200643,
2006b). See also references therein for further details outside the scope of this article.

To find an optimal solution of the problem, a formal measure of the solution quality shall be introduced

first. Traditionally, it might be a least-squares target for a difference between the elements of all l7n and

corresponding calculated U, (for example, Painter & Merritt (2006)):

2 {(UTLS,nxx - ljmcx )2 + (UTLS,nyy - Unyy )2 + (UTLS,nzz - Unzz )2 + (91)

n=1,N

+ (UTLS,nxy - Unx 2 )2 + (UTLS,nxz - Unxz )2 + (UTLS,nyZ - Unyz )2} g min

However, this target may be more sensible to errors for atoms that are far from the reaction center
(since the matrices 4, are "larger”), does not distinguish atomic types (a proper modeling of U, for a
heavy atom may be more important considering its contribution to the electron density and structure
factors) and others. Also the sum over all elements of the matrix U, is probably non-optimal since not

all of them contribute equally to the form of electron clouds. From that point of view, the target function
(9.1) is an intuitive, but has no real physical background. Merritt (1999) suggested a more sophisticated
density-correlation-based target expressed through anisotropic atomic displacement parameters
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(detT ™" det T3, )
[det(ﬁ-1 + U;;L)/s]

—> max (9.2)

In fact, some more general function of the form

f(TLSparameters;{Um v.u._u._U. U n=1,N})emin (9.3)

> nxx = nxx ™ nxx 5™ nxx?

can be introduced. Here in the simplest case ‘TLS parameters’ mean the elements of the matrices (8.5-
8.7); some other ways of parameterisation have been discussed in the text. Formally speaking, one

should control that the residual matrices Un -U,, are positive definite since they suppose to

correspond to U At the same time, practical studies show that neglecting this restriction allows to

ind,n"

improve the R-factors (Afonine, phenix-online.org/newsletter/CCN_2010_07.pdf).

Another task, different from reinterpretation of [7"' is to consider directly TLS parameters as

parameters of the model during model refinement
fl{atomic coordinates}, {TLS parameters}, {Fops(hkl)}) — min (9.4)

as it was implemented in CORELS (Sussman et al., 1977), RESTRAIN (Driessen et al., 1989) and later in
REFMAC (Winn et al., 2001), phenix.refine (Afonine et al.,, 2005) and BUSTER (Bricogne et al., 2009). See
also Moss et. al. (1996). Here f can be any appropriate function of model parameters and experimental

diffraction data.
9.2. Practical scheme

As stated above, the formal goal is to find the parameters of the T, L and S matrices that minimise the
target (9.3) or (9.4). One can note that the elements of UTLS,” are linear functions of the elements of the
TLS matrices. When the target is a quadratic function of elements of U like (9.1), a close solution of the

problem can be suggested solving the system of linear equations. However, in practice, even in this case
iterative optimisation methods may be required where knowledge of best possible initial parameter
values facilitates solving the problem.

Given a set of Un values, the TLS matrices intuitively should include “as much as possible” of common

atomic movement leaving the rest to individual atomic movements. To start the procedure, one can try
to assign all possible common motion to the 7 matrix making L and S equal to zero unless they are

known from previous refinement cycles. When all atomic displacement factors are isotropic with B,
instead of [7”, the search for the “maximal” 7" is trivial. This matrix is diagonal, with all three diagonal

elements equal to the minimal En value over all atoms of the group. When the displacement parameter

is anisotropic for some of atoms of the group, the “maximal” T can be found following the algorithm
described by Afonine & Urzhumtsev (2007). Then the parameters of all three 7LS matrices are refined.

9.3. Once more about the origin at the reaction center

When using TLS parameterisation, the choice of group origin is arbitrary and does not affect the
matrices U, ¢, calculated from obtained TLS. Typically the origin is taken as center of mass or center of

geometry of a TLS group (the difference is the use or lack of use of the molecular weights in averaging
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the atomic coordinates; usually this difference is insignificant) as suggested by Rae (1975b) and used for
example in RESTRAIN (Driessen et al., 1989). Citing Tickle & Moss (1999), “...for a molecule constrained
by intermolecular forces in a crystalline environment, the centre of gravity loses the special significance
that it has for freely moving rigid bodies.” The natural origin for this model is a reaction center and the
idea that the body is oscillated around some bond(s) suggests that it is rather at a periphery of the body
and not at its centre. Unlikely for the center of mass, the reaction center is initially unknown.

If a hypothetical rotation axis is known in advance, one can initially choose any its point as the origin
instead of the center of mass. In any case, it seems useful to find the coordinates of the reaction center
from diagonalisation of S (section 7.6) when it starts to be known and to reassign there the origin for
further calculations (see for example TLSANL by Howlin et al., 1993).

Appendix A. Changing the coordinate system
Al. Transformation matrix

Let (x, y,Z) be coordinates of a vector q in some coordinate system with the basis vectors (i,j,k) and
(x’,y',z') be coordinates of the same vector in another coordinate system with the basis vectors
(i/,j',k/). Let (i;,i;,i; ), (j;,j;,j;)and (k;,k;,k;)be coordinates of the vectors of the new base in the

initial coordinate system. We define the transformation matrix

i Je ok
Q=\i, Jj, k, (A1.1)
A

It is easy to see the rule

i 1 Jh 0 k! 0
i [=0l0|, |/, [=9Q|1| |k |=0]0 (A1.2)
i 0 jl 0 k! 1

linking the initial coordinates of the base vectors (i,j,k) with their coordinates in the new system. The
same rule can be applied to any vector q:

!

X X
y(=0|y (A1.3)
z Z’

To demonstrate this, it is sufficient to note that
q=xi+yj+zk=x1+yj +zk' (A1.4)

That gives, accordingly to (A1.2), in the original coordinate system

X 1 0 0 x'
y|=x'0[0|+y'0l1|+2'0[0|=0|y (A1.5)
z 0 0 1 z'
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Let (qx,qy,qz ) and (q;,qy,q;)be coordinates of a vector q in some coordinate systems with

the base vectors (i,j,k) and ( i',j .k ), respectively. If Q is the transformation matrix as defined in

Appendix A1, then accordingly to (A1.3) the coordinates of a vector in these coordinate systems are
linked by relations:

A2. Relation between coordinates

! !

q, q. q. q,
q, |=9| g, : q, =07 4, |, (A2.1)
q. q. q. q,

(¢.9,4.)=(d.4,4)0" . (4.4,d)=(q.9,4.)@)

Let’s have a quadratic function of the coordinates

qx
f@=(-q'U"q)=(q.9,4.)U"'| 4, (A2.2)
q,

such that this function is independent of the choice of the coordinate system. This means that, using
(A2.1),

q. q,
f@=(a.q ) U1 4 |=(¢.49.4.)U"| 4
q. q.
q, | <
-[(¢.q,q)0° 0| 4 ||=(4. 4, q)[eve] 4, (A2.3)
q. g
requiring the relation
Ut=0U"0 (A2.4)
or
U/ — Q—IUH (Qr)—l (AZS)

The last relation is satisfied for U defined as (2.3) since
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q,
U'={aq")=( | 4, (q; g, q;)
q.
q,
(o a |4 @ 4 e )-0ue) (A26)
q.

Quite often both old and new bases are composed from the unit vectors mutually orthogonal to each
other. This means that the transformation matrix Q is nothing else but a rotation matrix. For example, a
rotation by angle ¢ around the axis k is defined by the matrix

cosp -sing 0

Q=RZ(¢)= sing cosep O (A2.7)
0 0 1

Note also that here the inverse transformation is a rotation by angle —¢ giving

cosp sing 0
0" =R'p)=R.(-¢)=|-sing cosg 0|=RI(p)=0" (A2.8)
0 0 1

This propertyR_1(¢)=R’(¢) is true for any rotation matrix given in the orthonormal coordinate
system. With this property the transformations (A2.4-A2.5) become

U,/l — Q—lUnQ (A29)
U =0"0,'0
A3. Matrices of linear operators

A transformation of vectors of the three-dimensional space,  — P, is called linear (a linear operator) if

for any vectors ¢, —p,, q, —> P, and for any number A there are

(@, +q,)—p, +p, (A3.1)
(2q,)— 2p,

A particular example of a linear transformation is rotation.

In a given coordinate system with the base vectors (i,j,k) a linear transformation can be defined by a

matrix
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iX jx k)(
R=|i, Jj, k, (A3.2)
iZ jZ kZ

which columns are coordinates of the transformed base vectors 1, j,K, respectively. It is easy to see that
the coordinates (px,py,pz ) of each transformed vector are related to the coordinates (qx,qy,qz ) of

the initial vector by relation

Py q,
p,|=R|q, (A3.3)
P q.

Note that here (A3.3) links coordinates of different vectors in the same coordinate system while (A1.3)
and (A2.1) link coordinates of the same vector but in different coordinate system.

It can be noted that the matrix of the inverse transformation p — q, when this transformation exists, is

just the inverse matrix R It follows from (A3.3) and (A2.1) that

!

p. Py q, q,
p,|=07"|p,|=0"R|q, |=0"RO|q, (A3.4)
p. p. q. q.

and when changing the coordinate system, the matrix of a linear operator, not necessary a rotation one,
is transformed following the rule similar to (A2.10) :

R'=07'RQO (A3.6)

Just as a remark we remind the reader that the property R (¢) = RT(¢) of the rotation matrices is not

necessary conserved for non-orthonormal coordinate systems. For example, for a rotation by z/3 in the
hexagonal coordinate system

1 -1 0 0 10
R, (z/3)=|1 0 of,R}\(w/3)=]-1 1 0|=R,(z/3) (A3.7)
0 0 1 0 0 1

A4. Properties of matrices U (trace and symmetry)

Let’s consider two square matrices, A with the coefficients o and B with the coefficients S,
Jj,k=1,...K . We start from a trivial exercise

tr(4B) = ;K(AB),, - ;Kk: by =sz ,Zka”‘ B, =

showing a property of the trace of a product of two matrices. As a consequence, for the matrices with the
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property (A2.9) or (A3.6)

tr(U") = tr(Q7'UQ) = tr(UQQ™") = tr(U) , (A4.2)
the trace is conserved when changing the coordinate system.

Another property used in the main text is that for such matrices the symmetry of the matrix U* = U is
conserved with the rotation of the coordinate system :

Uy =('voy =0U(0")' =0"vo =1 (A4.3)
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