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PHENIX News

New releases

Model-building

New beta-testing releases in model-building
include  phenix.combine_models and a
trace_chain option for phenix.fit_loops. The

combine_models method will take two
overlapping models and a map and try to
identify the best parts of each model based on
the map. It then creates a single new
model. The method can be used for models
that are assigned to sequence as well as those
that are not. The trace_chain option for loop
fitting uses a fast chain-tracing algorithm to
find a path between two ends of a loop and
then builds a loop based on that chain.

New features

New autosol features

Classical density modification is available in
the autosol program using the command
mask_type="classic". Autosol (versions 1078
and higher) now has a "derscale=xxx"
keyword that allows you to fix the scale factor
for derivative datasets (useful for rip phasing
where the scale factor can be critical for
structure solution).

Anisotropy corrections and sharpening

phenix.autosol and phenix.autobuild now
automatically apply an anisotropy correction
and sharpening for all density-modified map
calculations. At the end of these methods a
final model is produced that is refined against
the original (uncorrected) data. This model is
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written out as overall_best.pdb. The
uncorrected data for refinement is written out
as overall best refine datamtz. You can
adjust how this works by specifying a target
overall B-value if you want (e.g., b_iso=25) ,
and you can also turn it off if you like
(remove_aniso=False).

Ensemble output options in
phaser.MRage.solutions

Ensemble models, which contain structural
information from a series of homologous
templates, can be very powerful in molecular
replacement. However, after molecular
replacement has succeeded, information
content of the solution is reduced, since due to
limitations of the PDB format, the ensemble
model is normally replaced by the best model
in the collection. Novel output options have
been added to phaser.MRage.solutions that
allow the preservation of the previously
discarded information content in part or in
full. (It is important to note that the output
map is not affected in any way, and is always
calculated with the full information content of
the selected solution.) The list of output
options are as follows (available via the --
output switch): - single (default). This just
select the first model from the ensemble. -
best-single-model. This calculates the LLG of
each model and selects the one that gives the
highest LLG. The best scoring model of one
ensemble is selected independently for each
copies of the ensemble, and can therefore vary
if there are significant differences between
the NCS-related molecules. - combined. This
option uses phenix.combine_models to
combine all components of the ensemble
model into a "chimera" model, based on their
fit to the electron density. As for the previous
option, this is also done independently for
each copies of the ensemble, and the
procedure can yield slightly different results
for NCS-related molecules. - ensemble.
Outputs all components of the ensemble
model in one file. Altloc identifiers are
assigned to each component of the ensemble.
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Crystallographic meetings and
workshops

Gordon Research Conference on Diffraction
Methods in Structural Biology, Bates College,
Lewiston, ME, July 15-20, 2012

Jeff Headd will be presenting at the Gordon
Conference on Diffraction Methods in the
“Getting the Best Out of Your Data: Data
Analysis” section.

The 27th Meeting of the European
Crystallographic Association, Bergen, Norway,
August 6-11, 2012.

Pavel Afonine will give the plenary and
receive the Fifth Erwin Felix Lewy Bertaut
Prize of the European Crystallographic
Association (ECA) and European Neutron
Scattering Association (ENSA).

Expert advice

Fitting Tip - Rotamer correction, with
backrubs

Jane Richardson, Duke University; Jeff Headd,
LBL

Backward-fit Asn/G1ln/His aminoacid side-
chains (including His protonation - see Tip
CCN, January, 2012) can be corrected
essentially without affecting the match of
model to data. However, sidechains with
tetrahedral geometry (Thr, Val, Ile, Leu,
and even Arg) may also be modeled
backwards into elongated or flat density, and
those corrections must be done along with a
refinement process, either integrated or as
rebuilding (e.g. in Coot or in KiNG) alternated
with refinement.

The figure on the next page shows an example
(val 218 in 1LPL) where the density does
not clearly indicate directionality of the
tetrahedral branch, and the wrong choice was
modeled (in gold). A problem is diagnosed by
the doubly-eclipsed rotamer outlier and the
serious all-atom clashes. The imaginary water
is also suspicious, and such cases distort bond
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If you know that such
misfits are a common systematic error, you

angles, oftein enbugh to be
although not here.

will see immediately how to make the
correction, which is easy and satisfying to do.
The CB position and sidechain geometry
should first be idealized; then the %1 value
changed about 180° to align with the density
from the other direction (for a backward Leu
or Arg, 2y angles must be changed). This will
usually place the sidechain parallel to but
somewhat outside the density, so it must be
shifted in by a manual fit or by real-space
refinement. The result (green), as replaced in
1TOV (Arendall 2005) occupies more-or-less
the same space, fits the density a bit better,
and corrects all of the validation outliers.

The most effective motion for achieving the
shift of sidechain sidewise into density is the
"backrub" (Davis 2006), a simple rotation
around an axis between the i-1 and i+1 Ca's
that has a good lever-arm for shifting the Cp in
a direction perpendicular to the backbone.
The second figure (below) shows a schematic

“Backrub”
schematic

Ile example
at atomic resolution
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this same motion is used dynamically to relate
two clear alternate conformations seen at
high resolution. You can get a good feeling for
how the backrub motion works by rebuilding
backward-fit sidechains in KiNG, where it is
implemented as a separately controllable
feature under the "fit rotamer"” tool. Try Thr
77 in 1BKR, for instance, or Ile A 120 in
1MOO0. Then you will understand better how
backrubs are helping the real-space rotamer
rebuilding in Coot or in other automated
procedures, as well as being able to do them
yourself when that's needed. In Phenix,
backrubs have now been added to enable
even better rotamer correction in the torsion-
NCS procedure, and in future they will also be
added to the real-space rotamer fit option
within phenix.refine.
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FAQ

How can | use semi-empirical quantum
chemical methods to optimise the geometry of
my ligand?

There is an option in the ligand restraints
building module in PHENIX known as eLBOW
(Moriarty, Grosse-Kunstleve & Adams, 2009)
the can do this for you. The option is --opt
and will minimise the energy of geometry for
the ligand. The minimised geometry is
reflected in the ideal restraints written to
disk.

It was originally decided to use the Austin
Model 1 (AM1) with the implementation
being released in 2007. It soon became clear
that the reparameterisation for a subset of

References

elements (H, C, N, O, P, S, F, Cl, Br, and I)
known as Recife Model 1 (RM1) was easily
implemented on top of the AM1 method and
performed better for the smaller set of
elements. For more information on the
implementation of RM1 in eLBOW see the
reference and for more information of the
RM1 method see Rocha et al., 2006.

In addition to the semi-empirical methods
implemented in eLBOW, external quantum
chemistry packages can be used to optimise
the ligand geometry. For example, with the
GAMESS package installed, adding the
--gamess option will use the AM1 method in
GAMESS. Furthermore, the other higher-level
quantum mechanical methods are available
via the --method and --basis options.
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SHORT COMMUNICATIONS

DETAC: tools to detect alternative conformations by unrestrained

refinement.
Oleg V. Sobolev

Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia

Correspondence email: sobolev@impb.psn.ru

Introduction
Unrestrained refinement is stable for the vast
majority of atoms when working at atomic

resolution. Nevertheless geometrical
restraints should be used in refinement for
residues that are present in several

(alternative) conformations in the crystal
used for the X-ray experiment, otherwise
residue geometries deteriorate significantly.
We believe that large distortions of the
residue  geometries in  unrestrained
refinement may hint at the presence of
alternative conformations for this residue.

To get these hints in a routine way we suggest
two methods to analyze shifts of atomic
centers resulted from several cycles of
unrestrained refinement. A simple diagram
plotting the values of atomic shifts against the
residue number may give an idea of the
crystallographic order of different parts of the
structure at qualitative level (Sobolev &
Lunin, 2008). To put the analysis on a more
quantitative basis several decision-making
procedures were developed and tested which
compose a list of residues that are likely to be
present in alternative conformations or
disordered. These residues should be checked
thoroughly with Fourier syntheses and
included into the model with alternative
conformations, when necessary (Sobolev &
Lunin, 2012).

To study mobility of atoms in
unrestrained  refinement and  derive
parameters for decision-making procedures
we studied 203 structures from PDB with
resolution of experimental data better than
1.2A and R-work better than 0.13. We took
care in setting the limits for R-factor values of
the models to select high-quality structures in
which the alternative conformations were

the
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assigned reliably. The following steps were
applied sequentially to each selected model:

1. The alternative conformation possessing
the largest occupancy was left in the
model with the occupancy set to 1.

2. Hydrogen atoms were included.

3. The standard restrained refinement was
performed for the model with
phenix.refine using anisotropic ADP
and riding hydrogens.

4. Three macro-cycles of unrestrained
refinement were performed with

phenix.refine.
5. Calculation of atomic shifts between
model after step 3 and 4.

The performed analysis of atomic shifts values
revealed significant difference between the
atoms in alternative and single conformations.
Moreover, side chain atoms usually get larger
shifts than main chain atoms, and atoms at the
surface of the molecule get larger shifts than
atoms inside the globule. At the average, shifts
are increasing with decrease of data
resolution and R-factor growth. These
differences provide the possibility of
distinguishing atom types by the study of their
atomic shifts in unrestrained refinement.

TUR-routine

To analyze a particular model, we suggest the
application of the Trial Unrestrained
Refinement (TUR). The TUR should consist of
three macro-cycles of  unrestrained
refinement by  phenix.refine  with
anisotropic ADP and riding hydrogens. The
crystal should diffract to approximately 1.2A
or better and the model should be refined
rather well (to the R-factor around 0.15 or
better). The following two programs
(shift plot and ac_prediction) may be
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Figure 1: Fragment of diagram of atomic shifts produced by shift_plot for 1SSX structure (Fuhrmann

et.al, 2004).
used to analyze the results of the TUR.

Shift_plot

Shift plot displays the results of TUR as
several diagrams presenting atomic shifts vs.
residue number (Fig.1). In these diagrams
each dot corresponds to a non-hydrogen atom
and the dots corresponding to the same
residue are grouped in a column. High
columns reveal residues that had significant
atomic shifts in unrestrained refinement and
thus are unstable and suspected to be present
in alternative conformations. Shift plot
produces three diagrams: (i) for all atoms, (ii)
for side chain atoms and (iii) for main chain
atoms. The diagrams hint at which residues
may have alternative conformations, but the
proper choice of cut-off level to select high
columns is not always obvious. These
diagrams may be used at any resolution and
do not depend on the refinement program.

Atoms that were in alternative conformations
in input PDB files are plotted as red circles.
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Some PDB files contain residues with equal
residue number but different insertion code
(column 27 of PDB files). Such residues will be
plotted as separate columns in the diagrams
but these columns will be marked by green
rectangle that shows that residues in it have
the same residue number.

ac_prediction

ac_prediction implements  automatic
decision-making procedure that classifies
every residue as ‘single conformation’ or

‘alternative conformations’” (SC and AC
below). The current version of
ac_prediction works with  atomic-

resolution data and unrestrained refinement
conducted by  phenix.refine. The
procedure is based on the observation that
SC-residues and AC-residues have different
mobility in unrestrained refinement. The
decision is made either by comparing the
observed atomic shifts with a predetermined
threshold, or comparing the probabilities of
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SHORT COMMUNICATIONS I

such shifts for SC and AC-residues. The
thresholds and probability distributions of
atomic shifts were calculated during analysis
of unrestrained refinement of 203 atomic-
resolution structures from PDB.

To run the program, two PDB files with
models before TUR and after TUR should be
provided along with resolution and R-factor
values of the model before TUR.
ac_prediction produces a list of residues
that should be checked first with electron-
density maps as main candidates for
introducing alternative conformations.

Availability

It should be noted that, ac_prediction does
not guarantee the correctness of the decision.
It provides a user with sorted list of residues
for which the presence of alternative
conformations is the most probable. The
testing of ac prediction proved that
prediction based on atomic shifts is more
accurate than prediction based on ADP or
density values in atomic centers in '2mFo-
DFc' syntheses (Sobolev & Lunin, 2012).

The programs are available for free download from the following address:
http://www.impb.ru/Imc/programs/ac_prediction/

Questions, comments and bug reports are welcome.
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ERRASER, a powerful new system for correcting RNA models

Fang-Chieh Chou?, Jane Richardson® and Rhiju Das®
aSt‘anford University, Stanford, CA
bDuke University, Durham, NC

Correspondence email: rhiju@stanford.edu

PHENIX collaborators Rhiju Das and Fang Chou at
Stanford have combined their full-enumeration
local search called Step-Wise Assembly, or SWA,
(Sripakdeevong 2010) with the Rosetta RNA
energy function (Das 2010), Rosetta electron-
density score (DiMaio 2009), MolProbity diagnosis,
and Phenix refinement into an automated
procedure called Erraser. The Duke team has
evaluated this as being by far the most effective
method yet for correcting fitting errors in RNA

structures, especially aimed at the difficult
backbone conformation and ribose pucker.
ERASSER starts with refinement in PHENIX

(phenix.refine), including backbone-specific
RNA target parameters (Adams 2010), followed by
Rosetta "relax" minimization (Leaver-Fay 2011). It
then runs the phenix.rna_validate MolProbity-
style validation (Chen 2010) to identify nucleotides
with problems in ribose pucker or suite
conformers (Richardson 2008), all-atom clashes, or
covalent geometry. Those residues are then put
through the exhaustive SWA sampling protocol to
look for better conformations that match the
density at least as well. SWA and Rosetta relax are
cycled three times, and those results considered
clear improvements are given a last round of
refinement.

As reported in the on-line preprint
(arXiv:1110.0276v2) of their paper (Chou 2012),
for the 24-structure test set R-free improves and
all-atom clashes, dubious ribose puckers, and poor
backbone conformers are all reduced on average
by factors of 2 to 8, while bond lengths and angles
can then remain outlier-free in refinement. This
works even at lower resolution -- for instance, the
clashscores at 3.2-2.7A resolution drop to values
typical in PDB RNAs at 1.8A. Some of the
independently validated improvements are at
critical binding or active sites. An example of
coupled local correction of ribose pucker,
conformers, and clashes is shown in the figure, at
the saM-I binding site of the 2GIS riboswitch
(Montange 2006).
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2GIS SAM site

ZN

original PDB ERRASER corrected

ERRASER's success depends on its exhaustive
enumeration of the possibilities, so that it is
somewhat compute-intensive -- but not
unreasonably so because the sampling is purely
local. The user needs to install Rosetta as well as
PHENIX. The scripts for running both the
PHENIX refinements and the ERRASER cycles in
Rosetta are included in the supplementary
material for the in-press paper. ERRASER has also
been integrated into PHENIX, and the users can
run it under command line through the
“phenix.erraser” application.
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cctbx tools for transparent job execution on clusters

Gébor Bunkéczi® and Nathaniel Echols®
“Department of Haematology, University of Cambridge, Cambridge, UK
®Lawrence Berkeley National Laboratory, Berkeley, CA

Correspondence email: gh360@cam.ac.uk

Introduction

With the availability of multi-core CPUs, parallelization is becoming increasingly common in software
development for speeding up execution. Specialized supporting tools and libraries have been made
available for various programming languages to help developers in writing parallel code. The Python
programming language (http://www.python.org) provides the threading and multiprocessing
modules in the Python Standard Library (http://docs.python.org/library/index.html), which allow
parallel execution of calculations on a separate thread or process, respectively. These modules have
proved very useful in shared-memory-based parallelization, but cannot harness the computational
power provided by clusters without specialized code. For certain tasks in scientific computing, access to
CPUs in clusters would boost productivity considerably, but due to the inherent heterogeneity in
mechanisms of access and job control, it is not possible (or not practical) to maintain specialized code
that would allow universal deployment. The current work describes a component that allows
transparent access to an underlying submission queue, and enables execution in a unified way. It is
available with the 1libtbx module of the Computational Crystallography Toolbox (cctbx,
http://cctbx.sourceforge.net; Grosse-Kunstleve et al, 2002), the open-source component of the
PHENIX project (http://www.phenix-online.org; Adams et al., 2010).

Goals

The threading and multiprocessing modules in the Python Standard Library provide the
Thread and Process classes, respectively, to execute code concurrently with the main thread. Both of
these classes share a common interface, and therefore code designed to use one of them would run with
the other correctly. Providing a Job class that shares the same interface with the Thread and Process
classes, and acts as a drop-in replacement, but submits the calculation to a queuing system, would
enable a suitably written program to run seamlessly on clusters.

In addition, the need for another component arises from the fact that both Thread and Process rely
on data channels to send the result of the computation back to the main thread (Figure 1). Such channels
are provided by e.g. the Queue.Queue and multiprocessing.Queue classes. Queue.Queue is
memory-based and is primarily useful in conjunction with Thread, because the data cannot cross a
process boundary, while multiprocessing.Queue uses a (file or network) socket that allows inter-
process data exchange, and could also be used with Process. Unfortunately, even the latter would not
be suitable for the proposed Job class, because execution in general would take place on a different
host, and makes the development of a novel Queue necessary.

[t is clear at this stage that a fair amount of temporary data has to be written to the current directory.
This needs to be done in a way that concurrent instances of the same program running in the same
directory does not result in a race condition. As a non-functional goal, the number and size of temporary
files should be kept at the necessary minimum.

Constraints

A completely general implementation of such functionality may be possible, but beyond available
resources. For practical reasons, the only function calls supported are those that can be serialized with
the pickle module. This includes all pure Python objects, Boost.Python (Abrahams & Grosse-
Kunstleve, 2003) exported objects with serialization support, and named functions
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from multiprocessing import Process, Queue

def f(qg):
g.put ([42, None, 'hello'])

\l

if name == ' main_ ':
g = Queue ()
p = Process(target=f, args=(g,))
p.start ()
print g.get () # prints "[42, None, 'hello']"
p.join()

Figure 1 Example demonstrating typical use of the multiprocessing module (taken from
http://docs.python.org/library/multiprocessing.html). Note that the result is returned via a
multiprocessing.Queue instance thatis passed to the call as an argument.

(http://docs.python.org/library/pickle.html#what-can-be-pickled-and-unpickled). Notable exceptions
are lambda-functions and functions defined in the interactive interpreter.

Design

Analyzing the format of job submission commands and available options on queuing system we have
access to, i.e. Sun Grid Engine (SGE, http://en.wikipedia.org/wiki/Oracle_Grid_Engine), Load Sharing
Facility (LSF, http://en.wikipedia.org/wiki/Load_Sharing_ Facility) and Portable Batch System (PBS,
http://en.wikipedia.org/wiki/Portable_Batch_System), allowed us to formulate common and varying
properties that can be exploited in the design:

* Command-line options are rarely conserved, but control similar behavior. These could be
encapsulated so that the actual switches are hidden, but the behavior is exposed.

* All systems capture stdout and stderr from the process in files. Default naming convention
varies, but it is possible to assign a name via command-line options.

* All systems provide a command-line option to change the default directory to the current one.

* The studied systems accept commands from stdin, i.e. rendering an initial (temporary)
command file unnecessary. Unfortunately, this is not universally valid, e.g. when using Condor
(http://en.wikipedia.org/wiki/Condor_High-Throughput Computing System), a command file
and a Condor control file are required, and the documentation suggests that the command file
has to be an actual file on the file system. This restriction, however, is specific to Condor, and it
would not be productive to not take advantage of the read from stdin feature when it is
available. Therefore, this part should be factored out in a component that has to be replaced for
systems that do not support it, e.g. Condor.

* Passing input data to the job can be done by either writing out a temporary file, or by
incorporating this data in the command file. The most efficient method depends on the size of
input.

* SGE and LSF support synchronized mode (in addition to the more common asynchronous one)
that has certain benefits when checking whether a job has completed or not (polling). This could
be made available for queuing systems that support it by suitable encapsulation.

Since queuing systems all differ, actual details have to be passed to the Job constructor at instantiation.
However, this changes the interface from that of Thread and Process, and makes it unsuitable for
drop-in replacement. This can be solved by storing details of the queuing system in a handler class that
has a method with an interface identical to Thread or Process. Varying execution details are then
passed onto the Job constructor by the handler. The final design of the processing class is shown in
Figure 2.
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Figure 2 UML-style class diagram of components provided by the processing module.

Factoring the Poller out to a separate entity deserves an explanation. Polling for asynchronous jobs
can be very slow, because it requires a system call to the appropriate queuing system command. This
design allows a global Poller shared by all jobs, which requires less frequent updates than individual
jobs would poll.

The data channel processing.Queue is implemented using temporary files that are placed in the
current directory (that is assumed to be on a file system shared between the hosts). It mimics the
interface of Queue.Queue and multiprocessing.Queue. Each instance is assigned a unique label,
consisting of a root name, which is provided as a convenience for the user to know which program has
created the temporary file, the process ID, and the object identifier (as returned by the Python id
function); the latter two ensures the label is unique. This is used as the root of the file names. Temporary
files are then named using the unique label and a sequence number, so that the channel could return
multiple data, although this is not normally necessary. While this simple implementation suffices for
most practical wuses, this «class is not functionally equivalent to Queue.Queue or
multiprocessing.Queue, since those are multi-producer, multi-consumer channels, while
processing.Queue is strictly single-producer and single-consumer. In addition, due to latency
associated with network file systems, a generous timeout has to be allowed. Therefore, for functional
and performance reasons, processing.Queue is not a generic replacement for Queue.Queue or
multiprocessing.Queue, but rather should be employed when necessary, i.e. with the
processing. Job class. In certain cases, a higher performance replacement is possible. MPI (message-
passing interface) provides network-based inter-host communication that could be exploited. In
addition, network-based channels between hosts can also be used in favorable cases, if there are no
firewalls blocking access to incoming connections.
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from libtbx.queuing system utils import processing

def f(q):
g.put ([42, None, 'hello'])

if name ==
g = processing.Queue( identifier = "tmp" )
sge = processing.SGE ()
p = sge.Job (target=f, args=(qg,))
p.start ()
print g.get () # prints "[42, None, 'hello']"
p.join()

__main

Figure 3 Example code from Figure 1 rewritten to run on SGE.

Coding

The details of the implementation in Figure 2 may appear daunting. However, only few applications will
need to exploit the full flexibility provided by the design. For regular use, convenience constructors are
provided for the queuing systems that are supported. These constructors also allow incorporation of
user configuration, e.g. using a dedicated command for submitting with certain options, or extra
parameters to direct the job to a certain queue. A simple example is shown in Figure 3.

Scheduling

Queuing systems manage the submitted jobs and balance the load over the allocated hosts, and make
sure those are not overloaded. This is a very convenient feature that would often be useful for parallel
programs. The multiprocessing.Pool class offers very similar functionality, but it is limited to
handle multiprocessing.Process instances, and also provides no way for checking how many of
the assigned CPUs are idle. Furthermore, in some workflows incoming results can make certain
calculations unnecessary, and in this case it is important not to commit a calculation when there are no
resources for execution. Therefore, we have implemented such functionality as a new module,
libtbx.scheduling, so thatitcan be used independently from the processing module.

The class diagram is shown in Figure 4. ExecutionUnit encapsulates the actual execution mode. It
holds a factory function that creates an execution class instance (Thread, Process or
QueueHandler.Job). Manager objects hold and distribute the jobs onto ExecutionUnits.
Manager provides a simple interface to submit jobs, checks jobs in various phases of execution
(waiting, running, finished), and iterate through the results as they are produced or any particular
order. A separate Adaptor class is provided to give access to the same Manager from various parts of
the program, but keeping the jobs "private", so that a job submitted through an Adaptor is not
accessible from other Adaptor instances, even if they use the same Manager. This allows more
efficient design than by simply allocating resources to various parts of the program, because a single
global resource can distribute load until all CPUs are busy, while with isolated Managers free CPUs
from one instance cannot be reallocated to another.

The class diagram in Figure 4 suggests that the Manager allows ExecutionUnits with various types
of execution classes to be used. However, when a job is submitted, the system will not know how the
calculation will get executed, i.e. which execution class will be instantiated, because it is not predictable
which ExecutionUnit will first complete the calculation it is currently running. Since a data channel
has to be passed along with the calculation to return the result, and the type of the data channel depends
on the execution class, this presents a problem. One solution would be to use the most general data
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Figure 4 Class diagram of the scheduling module.

channel, i.e. the file-based processing.Queue that is implemented for processing. Job. However,
this would represent a performance sink when processing.Job is not used (which may not be
possible to know until run time). A better solution is to assign the appropriate data channel to the
ExecutionUnit. This is possible using a suitable Processor class that bundles the call with the data
channel, and extracts the results after the calculation has finished. Such functionality is available in the
RetrieveProcessor class, which is provided with the scheduling module. Using a
RetrieveProcessor may be slightly more efficient even when only uniform execution classes are
used, because it allows the data channels to be reused. An example is shown in Figure 5.

By using a Manager, it is possible to detach execution from program logic entirely. This is desirable,
because the client code need not be aware, how the result is obtained. After instantiation, the Manager
object can be used uniformly, without reference to the number and type of execution classes. In
addition, it is also possible to use main-thread-only (non-parallel) execution, with little performance
overhead. In principle, using a single Thread or Process class would be an acceptable solution, but a
slightly more efficient way is to define an "execution factory function" that performs the function call,
and avoids job startup overhead.

Current uses

The molecular replacement pipeline phaser.MRage is based on a scheduling.Manager for
handling parallel calculations. Depending on the molecular replacement search, phaser.MRage can
use a large number of CPUs, and therefore accessing clusters can boost performance substantially.
Encapsulating the execution mode was a major factor that allowed enabling additional execution modes
incrementally. Currently, besides the Python standard library modules multiprocessing and
threading, SGE, LSF and PBS are supported, but additional queuing systems can be added on request.
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from libtbx.queuing system utils import scheduling
import multiprocessing

import threading

import Queue

def f(value):
return value

manager = scheduling.Manager (
units = (
[ scheduling.ExecutionUnit (

factory = multiprocessing.Process,

processor = scheduling.RetrieveProcessor (
queue = multiprocessing.Queue(),
)

)

for i in range(2) ]

+ [ scheduling.ExecutionUnit (
factory = threading.Thread,
processor = scheduling.RetrieveProcessor (
queue = Queue.Queue (),

)
)
for i in range(3) ]
)
)

adapterl = scheduling.Adapter ( manager = manager )
adapter?2 = scheduling.Adapter ( manager = manager )

for i in range (10):
adapterl.submit( target = £, args = (i,) )

for i in range (10, 20):
adapter2.submit ( target = £, args = (i,) )

# after a short delay: print numbers from 10 to 19 in some order
# (adapterl jobs are processed first)
print [ i.result for i in adapter2.results ]

# immediately: print numbers from 0 to 9 in some order
# (these jobs have already been completed)
print [ i.result for i in adapterl.results ]

Figure 5 Example code demonstrating the scheduling module.
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Preamble

This newsletter article was inspired by figure 1 in
the B.W. Matthews’ paper (Matthews, 2009). The
figure shows averaged residual density
distributions as a function of distance from an
atom. Unexpectedly there is substantial negative
density in the vicinity of the atomic centers and
substantial positive density in the bulk-solvent
region. This became a subject of our analysis
described below.

Calibrating expectations

Analysis of electron density on an absolute scale
(i.e. in units of e/A3) requires the value of F000
reflection and the normalization (division) of
Fourier transform of the corresponding map
coefficients by the unit cell volume. While F000 is
never measured directly in the diffraction
experiment, it can be estimated. One way is to
measure the crystal average density payerage and
then estimate

FO00 = payerageVeell (1)

where V. is the unit cell volume. If the
macromolecular structure is already known, then
another alternative is to calculate it as

F000 = FOO0Ocac + FOOOpyi (2)

where FO0OQca is the sum of the scattering factors
at zero diffraction angle calculated over all atoms
in the unit cell (which includes the molecule itself
and all the symmetry mates) and FOOOpux is the
bulk-solvent contribution Kkgq1Vsor = Kso1VeenXs
where kg, and x are the average density of the
bulk-solvent and its volume fraction,
correspondingly. This obviously requires knowing
Kso;, Which can be estimated as described in
Fokine & Urzhumtsev (2002) and Afonine et al.
(2005), though may not be adequate (Afonine et
al, 2012, in preparation). Yet another approach
relies on the assumption that residual electron
density around reliably placed atoms should be
zero, which in turn defines

F000 = 'paverage, selectedatomsvcell + 1:Ooocalc
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where Paverage, selected atoms is the average
density around reliably placed atoms obtained
using a Fourier synthesis calculated without FOO0O.

To test the applicability of formula (3) we
performed the following numerical experiment.
For four selected structures from the PDB
(Berman et al., 2000), 2x8h, 3ahs, 3m8u and 3krr,
we simulated experimental data as Fobs = |Fmodel| =
Ktotal| Fealc + Foui|, where Fyoux was computed using a
flat bulk-solvent model with an average density of
0.35 e/A3. These calculations were performed
using the phenix.fmodel program (Afonine,
unpublished). For each test case two sets of data
were simulated: one is a 100% complete set up to
the highest measured resolution (F(f)bs) and the
second set (F(i)bs) corresponds to the set of Miller
indices of actually measured reflections, which
may be incomplete. Next we calculated four
Fourier syntheses on an absolute scale with (Apy,
Ap2, Ap4), and without (Ap3), accounting for FO0O:

Ap1 = {FLy ¢ /Keotal, @model = Feale, Pcalc ; AFO00}
Apz = {FLy /keotal - Feale, @ealc ; AF000}

Aps = {Flps/Kuota - Feale, Pealc}

Apa = {FLp ¢ /Keota - Feale, @ealc ; AF000}

and plotted averaged density values calculated as
described by Matthews (2009) (figure 1). Here

AF000 = FOOOobs - FOOOmodel
= FOOObulk

~ 'paverage, selected atomsvcell-

The first synthesis (Ap1) is obviously expected to
show the distribution of bulk-solvent: nearly zero
density levels around atomic centers, constant
density in the bulk solvent region with a level of
0.35 e/A3, and a smooth range of values at the
solvent-macromolecule boundary. Figure 1
confirms this expectation for all four structures.

(3)
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Figure 1. Average residual electron density as a function

Matthews, 2009). Simulated data; see text for notations.

The second synthesis (Apz) differs from Ap; in that
it is calculated with less accurate phases,
corresponding to the atomic model only. This is
expected to disturb the synthesis in some way but
perhaps not significantly. Indeed figure 1 shows
some positive density values in the vicinity of
atoms and a not perfectly constant (0.35 e/A3)
level of density in the solvent region away from
the macromolecule.

The third synthesis (Ap3) is equivalent to Ap; but
calculated without AFO00 term. The shape of this
synthesis is very similar to that of Ap: but the
values are shifted by a constant, resulting in
substantially negative density around atoms and
reduced density values in the bulk-solvent region
(figure 1).

Finally the fourth synthesis (Ap4) is equivalent to
Ap; but calculated using the incomplete set F., .
The density distribution is expected to be further
distorted compared to Ap; and Ap; (figure 1), and
the degree of distortion is a function of the
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of the distance from the nearest atom (for details, see

number and type of missing reflections. The
analysis of how missing reflections affect this
distribution is beyond the scope of this article.

Results

As we now know how the density distribution in
question appears in ideal or near-to-ideal settings
we can meaningfully analyze the analogous
syntheses calculated using real measured data,
Fobs (as opposed to simulated data used above).
For this we calculated two syntheses for each of
four models:

ApS = {Fobs/ktotal - Feale, Pcalc , AFOOO}
Ap6 = {Fobs/ktotal = Fodel, Pmodel , AFOOO}

and plotted averaged density values calculated as
described by Matthews (2009) (figure 2). Here
AF000 = -Paverage, selected atoms Veell and is not

necessarily equal to FOOOpuk but also accounts for
other missing scattering in the model.

The bulk-solvent-omit synthesis (Aps) overall
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Figure 2. Average residual electron density as a function of the distance from the nearest atom (for details, see

Matthews, 2009). See text for notations.

resembles the expected curve (e.g. compare with
Ap4). The differences may be attributed to the
errors in data and model parameters, model
incompleteness (missing atoms), and deviation of
the flat bulk-solvent model used to simulate F(i)bs
from the real bulk-solvent distribution. One can
postulate that a peak at approximately 3.5A in the
Aps synthesis could arise from partially structured
weakly bound and therefore unmodeled solvent.
However, one can notice the same behavior
(though less pronounced) in the Aps syntheses for
all four models, where no such partially
structured solvent was included in the calculation
of the data. Indeed, the peak positions in Aps (3.6,
3.2, 3.2 and 3.6 A) are quite similar to those in Aps
(3.8,3.8,3.8 and 3.6 A) for 2x8h, 3ahs, 3m8u and
3krr correspondingly. This may be attributed to
Fourier truncation artifacts, though a conclusive
answer would require further analysis.

The nearly flat residual synthesis, Aps, with a
density level significantly lower than the bulk-
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solvent value suggests that on average there is no
systematically missing features left to model in the
bulk-solvent region. However, since these density
distributions are the average over all atoms and
grid points of the map in the unit cell, they may
not capture local features that are yet to be
accounted for.

The residual density distribution shown in figure
1 in Matthews (2009) (red bars) closely resembles
the Aps distribution shown above, which suggests
that the AF000 reflection was not fully accounted
for, as would be required for map calculations on
an absolute scale.
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