Validation: data analysis

Pavel Afonine

Lawrence Berkeley National Lab, California, USA

KU, November 9th 2023
Phenix: tools for crystallography and cryo-EM

X-ray/neutron crystallography

- How good are the experimental data?
 - Data quality assessment
 - Experimental phasing
 - Molecular replacement
 - Improve maps
 - Density modification
 - Get a model which fits the data
 - Automatic model building
 - Improve the model and determine its quality
 - Refinement/validation
 - Ligand/custom restraints

Cryo-EM

- Data quality assessment
- Map optimization
- Automatic model building
- Fitting
- Refinement/validation

Deposition
Validation = checking model, data and model-to-data fit are all make sense and obey to prior expectations
Validation tools: *Crystallography vs Cryo-EM*

- **Exact same**
 - Model
 - Cryo-EM

- **Different**
 - Data
 - Cryo-EM or Diffraction

- **Model to data fit**
 - Similar
Validation tools in Phenix

Data analysis
- **Xtreme**: Analysis of data quality and crystal defects

Merging statistics
- Calculates a variety of statistics for unmerged intensities, including I/σ, R-merge, R-meas, and CC1/2.

Xtriage: Analyze quality of maps in CCP4 format

Experimental phasing

Molecular replacement

Model building

Refinement

Cryo-EM

Validation
- **Comprehensive validation (X-ray/Neutron)**: Model quality assessment, including real-space correlation and geometry inspection using MolProbity tools
- **Comprehensive validation (cryo-EM)**: Model quality assessment, including real-space correlation, for cryo-EM structures

Structure comparison
- Identify differences between multiple structures of the same protein, using multiple criteria

Calculate CC
- Comparison of unmerged data quality with refined model, as described in Karplus & Diederichs (2012)

EMRinger
- Model validation for de novo electron microscopy structures
Xtriage: all about your Xtal data

- Matthews coefficient probabilities
- Completeness by resolution
- Wilson plot sanity
- Detection of translational NCS (tNCS)
- Analysis of systematic absences and combination of tNCS with current space group
- Anomalous signal from measurability analysis
- Symmetry and twinning analyses
- Alternative point-group symmetry (can be detected on the basis of an R-value analyses)
Intensity statistics suggest twinning (intensities are significantly different from expected for normal data) and one or more twin operators show a significant twin fraction.

Translational NCS does not appear to be present.

Ice rings do not appear to be present.

The fraction of outliers in the data is less than 0.1%.

The data are not significantly anisotropic.

The resolution cutoff appears to be similar in all directions.

The overall completeness in low-resolution shells is at least 90%.

Overall completeness is above 90%.
Wilson B

Mean B and Wilson B are usually similar

- Wilson B is dominated by strongly diffracting (lower B) atoms that contribute more to high-res reflections
 - Wilson B represents the lower end of the range of B-factors
 - Discrepancy between Wilson B and mean B is not important
Wilson plot (mean intensity vs resolution)

- The Wilson plot looks at mean intensity of diffraction by resolution, a curve which has a predictable shape.
Wilson plot (mean intensity vs resolution)

- Main reasons for deviations from expected distribution
 - Bad data (e.g., ice rings or poor data processing)
 - Macromolecule that doesn’t look like the average protein
 - Looking at only a part of the plot (e.g., low-resolution data)
Data completeness

- PDB code: 1NH2, resolution 1.9Å, showing E6-E8

2mFo-DFc , 1σ
Data completeness

Completeness by resolution:
19.9274 – 3.2441 0.78
3.2441 – 2.5767 0.99
2.5767 – 2.2515 1.00
2.2515 – 2.0459 1.00
2.0459 – 1.8993 0.99

Overall completeness in d_{min}-inf: 0.95

Fcalc maps, full set d_{min}-inf

Fcalc maps, incomplete set

1.5σ map cutoff

1σ map cutoff

Systematic data incompleteness can distort maps
Non-crystallographic symmetry NCS

- Two or more molecules in the ASU related by rotation-translation
- NCS is found in about 1/3 to 1/2 of crystal structures
- Usually helps solving/refining models at medium-to-low resolution
- A special case of NCS, translational NCS (tNCS) leads to complications
Translational NCS (tNCS)

- tNCS arises when the ASU contains components that are oriented in (nearly) the same way and can be superimposed by a translation that does not correspond to any symmetry operation in the space group.

- Used to complicate MR (no it is taken care of)
- Risk to bias OMIT map
Translational NCS (tNCS)

<table>
<thead>
<tr>
<th>Xtriage summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red: Translational NCS is present at a level that may complicate refinement (one or more peaks greater than 20% of the origin)</td>
</tr>
<tr>
<td>Green: The intensity statistics look normal, indicating that the data are not twinned.</td>
</tr>
<tr>
<td>Green: Ice rings do not appear to be present.</td>
</tr>
<tr>
<td>Green: The fraction of outliers in the data is less than 0.1%.</td>
</tr>
<tr>
<td>Green: The data are not significantly anisotropic.</td>
</tr>
<tr>
<td>Green: The resolution cutoff appears to be similar in all directions.</td>
</tr>
<tr>
<td>Green: The overall completeness in low-resolution shells is at least 90%.</td>
</tr>
<tr>
<td>Green: The completeness is 98.98%.</td>
</tr>
</tbody>
</table>

Please inspect all individual results closely, as it is difficult to automatically detect all issues.
Twinning

• Twinning is a crystal growth disorder

Twinning

Typically only merohedral twinning is dealt with in a meaningful way in macromolecules
Twinning

- Merohedral twinning occurs when your crystal is composed of identical but rotated crystals combined together such that their lattices matching.

Observed intensity is a weighted sum of individual intensities:

\[I_{OBS}(\mathbf{h}) = \alpha_1 I(\mathbf{h}) + \ldots + \alpha_N I(T_N \mathbf{h}) \]

\[\alpha_1 + \ldots + \alpha_N = 1 \]
Twinning

- Twinning parameterization
 - **Twin law** describes orientation of different species relative to each other (rotation matrix T that transforms hkl indices of one species into the other)
 - **Twin fraction (α)**: fractional contribution of each component
 - Estimated by Xtriage
 - Refined by phenix.refine

\[
I_{\text{OBS}}(\mathbf{h}) = \alpha_1 I(\mathbf{h}) + \ldots + \alpha_N I(T_N \mathbf{h})
\]

\[
\alpha_1 + \ldots + \alpha_N = 1
\]
Twinning

- tNCS can mask effects of twinning
- If both are present, intensity distributions may look like normal
 - First check for tNCS and use different test for twinning (L-test)
- If crystal is twinned, you have lost information
- Maps going to have model bias that is worse than usual
- Experimental phasing may be difficult
- False symmetry may appear
Watch for outliers

- **R-factor in resolution bins helps to identify:**
 - Problem with bulk-solvent modeling
 - Problems at high resolution
 - Artifacts (green line):

INDE 3 5 -42 IOBS= 99999.999 SIGIOBS= 0.000