UCSF ChimeraX for Cryo-EM

University of Kansas
9 November 2023
Background
KU alum (Chemistry 2019, Computer Science 2021)
Joined UCSF RBVI after graduation
Most work is done on medical image reading and rendering
Webservices
My background is not quite in Cryo-EM
Talk based on tutorials and videos put together by Tom Goddard
Brief History of the RBVI

- 1976: CGL moves from Princeton to UCSF
- 1978: Molecular Interactive Display System (MIDS)
- 1988: Simulation added to MIDS, MIDS becomes MIDAS
- 1993: Tom Ferrin becomes the PI of the CGL's “P41” NIH grant
- 1994: Langridge retires
- 2000: CGL renamed to Resource for Biocomputing, Visualization, and Informatics
- 2002: UCSF Chimera released
- 2017: UCSF ChimeraX alpha release
- 2020: UCSF ChimeraX gets a 1.0 release
But enough about that...
Let’s look at some Cryo-EM data
Introduction to ChimeraX for cryoEM Atomic Structures

Tom Goddard
April 25, 2022
for Wah Chiu's Stanford cryoEM class

Introduction to using ChimeraX to analyze cryoEM maps and atomic models. We will look at recent mouse insulin receptor structures published March 31, 2022, map EMDB 25428 and atomic model PDB 7STH.

Synergistic activation of the insulin receptor via two distinct sites
Jie Li, Junhee Park, John P. Mayer, Kristofer J. Webb, Emiko Uchikawa, Jiayi Wu, Shun Liu, Xuewu Zhang, Michael H. B. Stowell, Eunhee Choi & Xiaochen Bai
Nature Structural & Molecular Biology volume 29, pages 357-368 (2022)

Topics

- How to look at cryoEM map contour surfaces.
- Working with atomic models.
- Using AlphaFold Database atomic models.
- Fitting atomic models in maps.
- Morphing between atomic models to view conformational changes.
How to look at cryoEM map contour surfaces

1. Look at EMDB 25428, 3.5A resolution, 60 MB file size.
 Command: open 25428 from emdb
2. Adjust threshold with histogram slider or command
 volume #1 level .03
3. Adjust step size to show full resolution.
 volume #1 step 1
4. Use soft lighting from toolbar for shadows.
 light soft
5. Save image with toolbar snapshot button.
 save irmap.png
Working with atomic models

6. Open atomic model that was built into map
 open 7st
7. Undisplay map with Models panel or command
 hide #1 model
8. Color by chain with Molecule Display toolbar or
 color #2 bychain
9. Show surfaces with Molecule Display toolbar or
 surface #2
10. Select insulin chain D with link in log or
 select /D
11. Color insulin yellow with menu Actions / Color / yellow or
 color sel yellow
Show map quality near atomic model

12. Look at map near one helix of insulin.
13. Clear selection with menu Select clear
 select clear
 hide #2 surface
15. Select one insulin helix with ctrl-click on ribbon followed by up arrow key
 select/D:8-19
16. Hide ribbon except for selected helix
 hide ~sel ribbon
17. Show map with Models panel
 show #1 model
18. Use menu Tools / Volume Data / Surface Zone near selected atoms
 volume zone #1 near sel range 3
19. Change map style to Mesh in Volume Viewer panel
 volume #1 style mesh
20. Show atoms of helix with menu Actions / Atoms / show
 show sel
21. Color nitrogens blue, oxygens red with Molecule Display toolbar color heteroatom
 color sel byhet
22. Use an AlphaFold model to start building an atomic model from the map.
 alphafold match INSR_MOUSE

25. Show AlphaFold predicted aligned error (PAE) plot with AlphaFold panel Error Plot button.
 alphafold pae #3 uniprot INSR_MOUSE

26. Color PAE domains using button on PAE plot. AlphaFold is not confident of the packing of different colored domains.
 alphafold pae #3 colorDomains true

27. Blue, yellow and pink domains are extracellular and in map. Green is cytoplasmic kinase not in map.
Fitting atomic models in maps

28. Fit blue AlphaFold domain in map.
 delete #3:1-27,337-end
30. Redisplay full map as surface.
 volume unzone ; volume style surface
31. Move blue domain into map with Move Model mouse mode from Right Mouse toolbar.
 ui mousemode right "translate selected models"
32. Ctrl click blue ribbon to select it.
 select #3
33. Move blue domain into map with right mouse (on Mac Option key + trackpad drag). Hold Shift key to rotate.
34. Use Fit button on Map toolbar to optimize position in map.
 fitmap #3 in #1
35. Show atoms as spheres to see fit better. Clear selection (ctrl-click background) then Molecule Display toolbar show atoms and sphere style.
 select clear ; show #3 ; style #3 sphere
Morphing between atomic models to view conformational changes

36. Above article describes 10 conformations of insulin receptor.
37. Open inactive form of receptor, PDB 7SL1.
 open 7sl1
38. Show 7th atomic model and hide map and alphafold model.
 show #2 model; hide #1,3 model; show #2 ribbon
 color bychain
40. Select atom of 7sl1 and align it by hand with move model mouse mode.

41. Calculate morph using command
 morph #2,4 same true
42. Reset morph slider to start and press Record button (red circle) to record a movie.
 movie record; coordset #5; wait 50; movie encode

43. Separation of intracellular kinases inactivates them.