Validation: data analysis

The Phenix Project

Lawrence Berkeley Laboratory

Solving structure by crystallography

Validation

Validation = checking model, data and model-to-data fit are all make sense and obey to prior expectations

Validation tools: Crystallography vs Cryo-EM

Validation tools in Phenix

		PHENIX home					
🕑 🔏 ? 🛛	🛫 🚀 🥑	C 🤞 😳					
Quit Preferences Help Citat	ions Coot PyMOL Ki	G Other tools Ask for help					
Actions Job history							
Projects		Favorites					
Show group: All groups	S Manage	Data analysis					
Select 🧭 Delete 🛃 New p	project 😵 Settings	Xtriage Analysis of data quality and crystal defects					
ID Last modified ✓ ChrisF Apr 13 2020	# of jobs R-free 09:42 28 0.194	4 Merging statistics Calculates a variety of statistics for unmerged intensities, including I/sigma, R-merge, R-meas, and					
real-space-refin Apr 03 2020 zzz1 Mar 21 2020	07:42 2 09:10 1	CC1/2.					
chris Mar 12 2020 dan Mar 11 2020	12:27 11 0.189 05:44 1	0 Analyze quality of maps in CCP4 format					
3j63 Mar 11 2020	02:28 1	Experimental phasing					
jason Mar 11 2020 rt6 Mar 11 2020	11:36 1 10:31 1 0.245	Molecular replacement					
mate Mar 10 2020	01:36 1	Pofinement					
emily Mar 09 2020	03:52 3	Kennement					
Mar 05 2020	08:25 3 0.192	3 Cryo-EM					
alex Feb 27 2020	11:33 6	Validation					
rt20201 Feb 18 2020	12:50 4 0.221 09:00 1 0.197	Comprehensive validation (X-rav/Neutron)					
real-space-refin Jan 30 2020	02:38 2	Model quality assessment, including real-space correlation and geometry inspection using MolProbity tools					
real-space-refin Jan 29 2020 ion_channel_den Jan 27 2020	10:56 1 07:36 3	Comprehensive validation (cryo-EM)					
10101 Jan 27 2020	12:38 2	Model quality assessment, including real-space correlation, for cryo-EM structures					
demos Jan 27 2020	10:57 3	Structure comparison					
ion_cnannei_den Jan 27 2020	10:03 2	by Structure comparison light differences between multiple structures of the same protein, using multiple criteria					
maicoim Jan 22 2020	04:28 3						
3NIR Dec 05 2019	10:2 1	Calculate CC*					
leighton Sep 02 2019	05:1 2	Comparison of unmerged data quality with refined model, as described in Karplus & Diederichs					
5pti Aug 27 2019	03:4 3	(2012)					
·		EMRinger Model validation for de novo electron microscopy structures					
		Ligands					
Current directory: /Users/pafoning	Current directory: /Users/pafonine/Desktop/all/people/ChrisF Browse						
PHENIX version dev-svn-000 Project: ChrisF							

Xtriage: all about your diffraction data

- Matthews coefficient probabilities
- Completeness by resolution
- Wilson plot sanity
- Detection of translational NCS (tNCS)
- Analysis of systematic absences and combination of tNCS with current space group
- Anomalous signal from measurability analysis
- Symmetry and twinning analyses
- Alternative point-group symmetry (can be detected on the basis of an Rvalue analyses)

Xtriage

•••					Xtriage (F	Project: porin-twin)	
×	2	- 63	•				
Preferences	Help	Run	Abort	View log	Save graph	Ask for help	
Configure	Xtriage_1						
Run status	Results						
				Xtriage sum	mary		• • • • • • • • • • • • • • • • • • •
Inter twin	nsity statisti operators s slational No	ics sugge show a si CS does i	est twinn ignifican not appe	ing (intensities t twin fraction. ar to be preser	are significan	tly different from expec	cted for normal data) and one or more
lce r	ings do not	appear t	to be pre	esent.			
The	fraction of	outliers i	n the da	ta is less than	0. <mark>1%</mark> .		
The	data are no	t signific	antly an	isotropic.			
The	The resolution cutoff appears to be similar in all directions.						
The	overall com	pletenes	s in low	-resolution she	lls is at least 9	0%.	
Over	rall complet	eness is	above 9	0%.			

Wilson B

Whole PDB (quality filtered)

Wilson statistics assumes atoms of the same kind are randomly distributed in the unit cell and have the same isotropic B-factors

- Mean B and Wilson B are usually similar
 - Wilson B is dominated by strongly diffracting (lower B) atoms that contribute more to high-res reflections
 - Wilson B represents the lower end of the range of B-factors
 - Discrepancy between Wilson B and mean B is not important

Wilson plot (mean intensity vs resolution)

• The Wilson plot looks at mean intensity of diffraction by resolution, a curve which has a predictable shape

Wilson plot (mean intensity vs resolution)

- Main reasons for deviations from expected distribution
 - Bad data (e.g., ice rings or poor data processing
 - Macromolecule that doesn't look like the average protein
 - Looking at only a part of the plot (e.g., low-resolution data)

Data completeness

• PDB code: 1NH2, resolution 1.9Å, showing E6-E8

2mFo-DFc , 1σ

Data completeness

Completeness by resolution:

Overall completeness in d_{min} -inf: 0.95

Systematic data incompleteness can distort maps

Non-crystallographic symmetry NCS

- Two or more molecules in the ASU related by rotation-translation
- NCS is found in about 1/3 to 1/2 of crystal structures
- Usually helps solving/refining models at medium-to-low resolution
- A special case of NCS, translational NCS (tNCS) leads to complications

Translational NCS (tNCS)

 tNCS arises when the ASU contains components that are oriented in (nearly) the same way and can be superimposed by a translation that does not correspond to any symmetry operation in the space group.

- Used to complicate MR (Phaser now can deal with it!)
- Risk to bias OMIT map

Translational NCS (tNCS)

• • •				Xtriag	ge (Pro	ject:	1j4r)							
X	?	🙆 😢				5								
references	Help	Run Abort	View log	Save graph	He	p								
Configure	Xtriage_1												4	⊳ >
Run status	Results													4 1
			Xtriage sun	nmary					(
Trar	slational N	CS is present	at a level that r	nay complicat	e refin	ement	(one or i	more p	eaks great	er than 20)% of the	origin)		
The	intensity st	atistics look r	iormal, indicati	ng that the da	ta are	not twi	nned.							
lce ı	Ice rings do not appear to be present.													
The	fraction of	outliers in the	e data is less th	an 0.1%.										
🔴 The	data are no	t significantly	anisotropic.											
🔴 The	resolution	cutoff appears	s to be similar i	n all direction	s.									
🔴 The	overall com	pleteness in	low–resolution	shells is at lea	ıst 90%	-								
The	completene	ess is 98.98%.												
Please ins	pect all in	dividual res	ults closely, a	as it is diffic	ult to	auton	naticall	ly dete	ect all issu	ies.				Ţ
Idle									Project:	1j4r				

Translational NCS (tNCS) and twinning

Xtriage (Project: 1j4r)							
Preferences Help Run Abort View log Save graph Help							
Configure Xtriage_1							
Run status Results							
Diagnostic tests for twinning and pseudosymmetry 😌							
Using data between 10.00 to 2.21 Angstrom.							
Patterson analyses							
Largest Patterson peak with length larger than 15 Angstrom:							
Frac. coord. : 0.333 -0.333 -0.330							
Distance to origin : 41.406 Height relative to origin : 62.542 % p_value(height) : 1.109e-05							
Explanation							
The p-value, the probability that a peak of the specified height or larger is found in a Patterson function of a macromolecule that does not have any translational pseudo-symmetry, is equal to 1.109e-05. p_values smaller than 0.05 might indicate weak translational pseudo symmetry, or the self vector of a large anomalous scatterer such as Hg, whereas values smaller than 1e-3 are a very strong indication for the presence of translational							
Translational pseudo-symmetry is very likely present in these data. Be aware that this will change the intensity statistics and may impact subsequent analyses, and in practice may lead to higher R-factors in refinement.							
Wilson ratio and moments Acentric reflections: <i^2>/<i>2 :2.430 (untwinned: 2.000; perfect)</i></i^2>							
twin 1.500) <f>^2/<f^2> :0.750 (untwinned: 0.785; perfect twin 0.885)</f^2></f>							

Project: 1j4r

• Twinning is a crystal growth disorder

Typically only merohedral twinning is dealt with in a meaningful way in macromolecules

• Merohedral twining occurs when your crystal is composed of identical but rotated crystals combined together such that their lattices matching

• Observed intensity is a weighted sum of individual intensities:

$$I_{\text{OBS}}(\mathbf{h}) = \alpha_1 I(\mathbf{h}) + \dots + \alpha_N I(\mathbf{T}_N \mathbf{h})$$
$$\alpha_1 + \dots + \alpha_N = 1$$

- Twinning parameterization
 - <u>Twin law</u> describes orientation of different species relative to each other (rotation matrix T that transforms hkl indices of one species into the other)
 - <u>Twin fraction (α)</u>: fractional contribution of each component
 - Estimated by Xtriage
 - Refined by phenix.refine

$$I_{\text{OBS}}(\mathbf{h}) = \alpha_1 I(\mathbf{h}) + \dots + \alpha_N I(\mathbf{T}_N \mathbf{h})$$
$$\alpha_1 + \dots + \alpha_N = 1$$

- tNCS can mask effects of twinning
- If both are present, intensity distributions may look like normal
 - First check for tNCS and use different test for twinning (L-test)
- If crystal is twinned, you have lost information
- Maps going to have model bias that is worse than usual
- Experimental phasing may be difficult
- False symmetry may appear

Watch for outliers

- R-factor in resolution bins helps to identify:
 - Problem with bulk-solvent modeling
 - Problems at high resolution
 - Artifacts (green line):

INDE 3 5 -42 IOBS= 99999.999 SIGIOBS= 0.000