Ligands in Phenix

Generating & modifying for all scenarios

Oleg Sobolev

CBMS Structural Biology Workbenches September 2024

What is a ligand?

- Small molecule (more than 1 atom, ligand, sugar, covalent modification, buffer molecules,...)
- Binds to a macromolecule
- Can serve a biological purpose or was designed to bind
- Can bind "by chance" (buffer molecule)
- Binding: non-covalent and/or covalent bonds

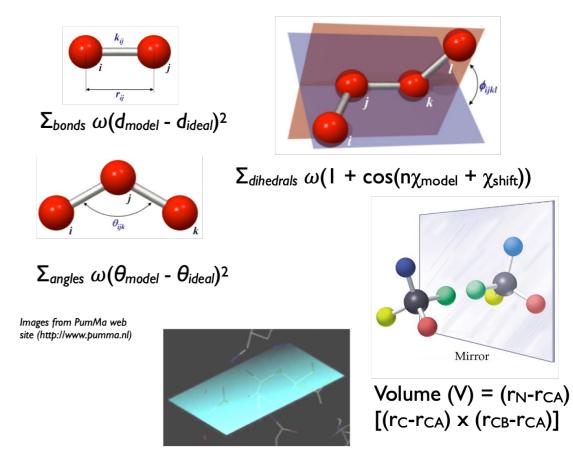
215k models in the PDB

What is a ligand?

- Small molecule (more than 1 atom, ligand, sugar, covalent modification, buffer molecules,...)
- Binds to a macromolecule
- Can serve a biological purpose or was designed to bind
- Can bind "by chance" (buffer molecule)
- Binding: non-covalent and/or covalent bonds

163k out of 215k models in the PDB have at least one ligand ("distinct non-polymer entity")

→ Chances are that you will have to deal with ligands!


"Dealing" with ligands

- 1) Find out what ligand(s) are in the crystal structure
- 2) Refine the ligand along with the macromolecule

We need restraints for the ligand.

Stereochemical restraints specify ideal values for:

- Bond lengths
- Angles
- Torsions
- Planes
- Chiral volumes

 $E = \sum_{\text{planes}} \sum_{\text{atoms}} W (m \cdot r - d)^2$

Ligands need restraints

If you try to run phenix.refine and a ligand has no restraints...

phenix.refine (Project:	presentations)	
Preferences Help Run Abort Save Graphics ReadySet TLS Restraints	Xtriage Ask for help	
Configure	↓ ▷ ×	
Input data Refinement settings Output Amber	4 4	
Job title :		
Input files	PHENIX	orror
File path	PHENIA	enor
Add file Remove file Modify file data type Use symmetry from s Space group : Vinit cell : X-ray data and experimental phases R-free label :	the model file to resolve the p file with matching restraint de	efinitions, along with
Data labels : High resolution : Low resolution :	apply_cif_modification and a	pply_cif_link parameter
Wavelength : Options	definitions if necessary.	
Neutron data		OK
Data labels : 🕞 R-free label :		✓ OK
High resolution : Low resolution :	options	
	Project: presentations	

(This message also occurs if atom names don't match!)

Libraries

- Monomer Library
- GeoStd

Algorithms

- Polymer
- Links

GeoStd

- All standard amino acids
- Current list of non-standard amino acids
- All standard RNA/DNA
- Current list of non-standard RNA/DNA
- Others 34k Mogul validated restraints using PBEh-3c/CPCM and higher QM

Phenix comes with the GeoStd library and a trimmed version of the CCP4 monomer library.

→ No need to generate novel restraints if your ligand is in the libraries.

Novel ligands

If the ligand is not in the libraries that ship with Phenix:

- Check other libraries
- If relying on 3 letter code: double check that it is the correct one

If still not found:

→ Get restraints from a dictionary generator

Confusion

- All depositions of X-ray model use mmCIF from 1 July 2019
- "I need a CIF file."
 - But what do you really need?

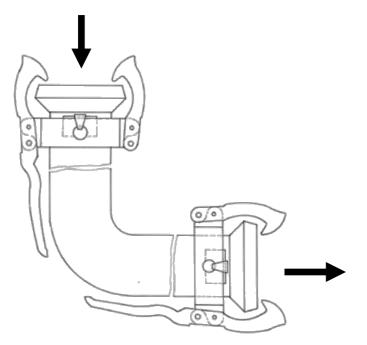
CIF

- Crystallographic Information File
- mmCIF macro-molecular CIF
- Used for
 - Model
 - Data
 - Maps
 - Ligands
 - Information
 - Restraints

Restraints?

- Provide a reasonable geometry during refinement particularly at low resolution
 - Bonds, angles, dihedrals, chirals, planes, ...
- Must be weighted against the experimental information

Overview


- eLBOW electronic Ligand Builder & Optimisation Workbench
- ReadySet! One-stop preparation for your refinement needs
- REEL Restraints Editor Essentially Ligands

eLBOW

eLBOW = electronic Ligand Builder and Optimisation Workbench

- Automated generation of restraints for ligands
- Fast, simple and flexible procedure
- Reduces the tedium of building 3D ligand geometries

Chemical input

Chemical restraints (CIF) Cartesian coordinates (PDB)

eLBOW

Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449

Nigel W. Moriarty,^a* Ralf W. Grosse-Kunstleve^a and Paul D. Adams^{a,b}

^aLawrence Berkeley National Laboratory, One Cyclotron Road, Mailstop 64R0246, Berkeley, CA 94720, USA, and ^bDepartment of Bioengineering, UC Berkeley, CA 94720, USA electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation

The *electronic Ligand Builder and Optimization Workbench* (*eLBOW*) is a program module of the *PHENIX* suite of computational crystallographic software. It is designed to be a flexible procedure that uses simple and fast quantum-chemical techniques to provide chemically accurate information for novel and known ligands alike. A variety of input formats and options allow the attainment of a number of diverse goals including geometry optimization and generation of restraints.

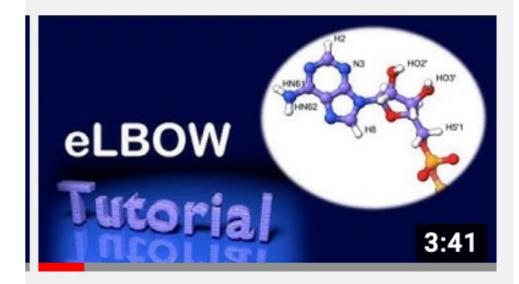
Received 27 April 2009 Accepted 23 July 2009

Video tutorial on the Phenix YouTube channel

Python-based Hierarchical ENvironment for Integrated Xtallography

Generating ligand structures and restraints in the eLBOW GUI

Overview

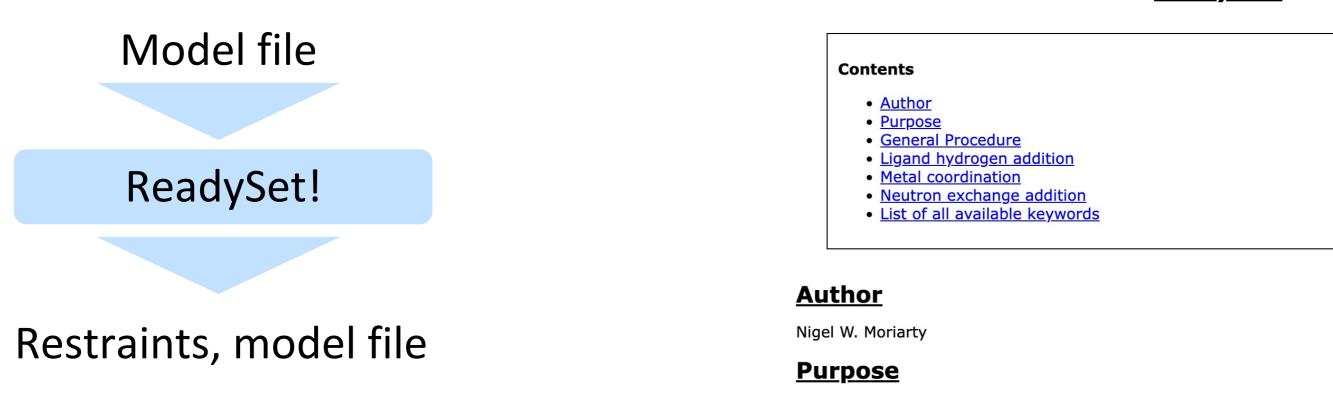

The electronic Ligand Builder and Optimization Workbench (eLBOW) is the primary tool for generating nonstandard ligand restraints in Phenix. In addition to existing as a standalone program, it is also used internally by the <u>LigandFit wizard</u> and <u>phenix.ready</u> <u>set</u> (integrated with the <u>phenix.refine</u> GUI). In addition to eLBOW, a separate standalone <u>graphical restraint editor</u> is available for advanced customization of restraints and structures.

Online documentation

https://phenix-online.org/documentation/reference/elbow_gui.html

N. W. Moriarty, R. W. Grosse-Kunstleve, P. D. Adams, (2009). Acta Cryst. D 65, 1074-1080.

Acta D paper

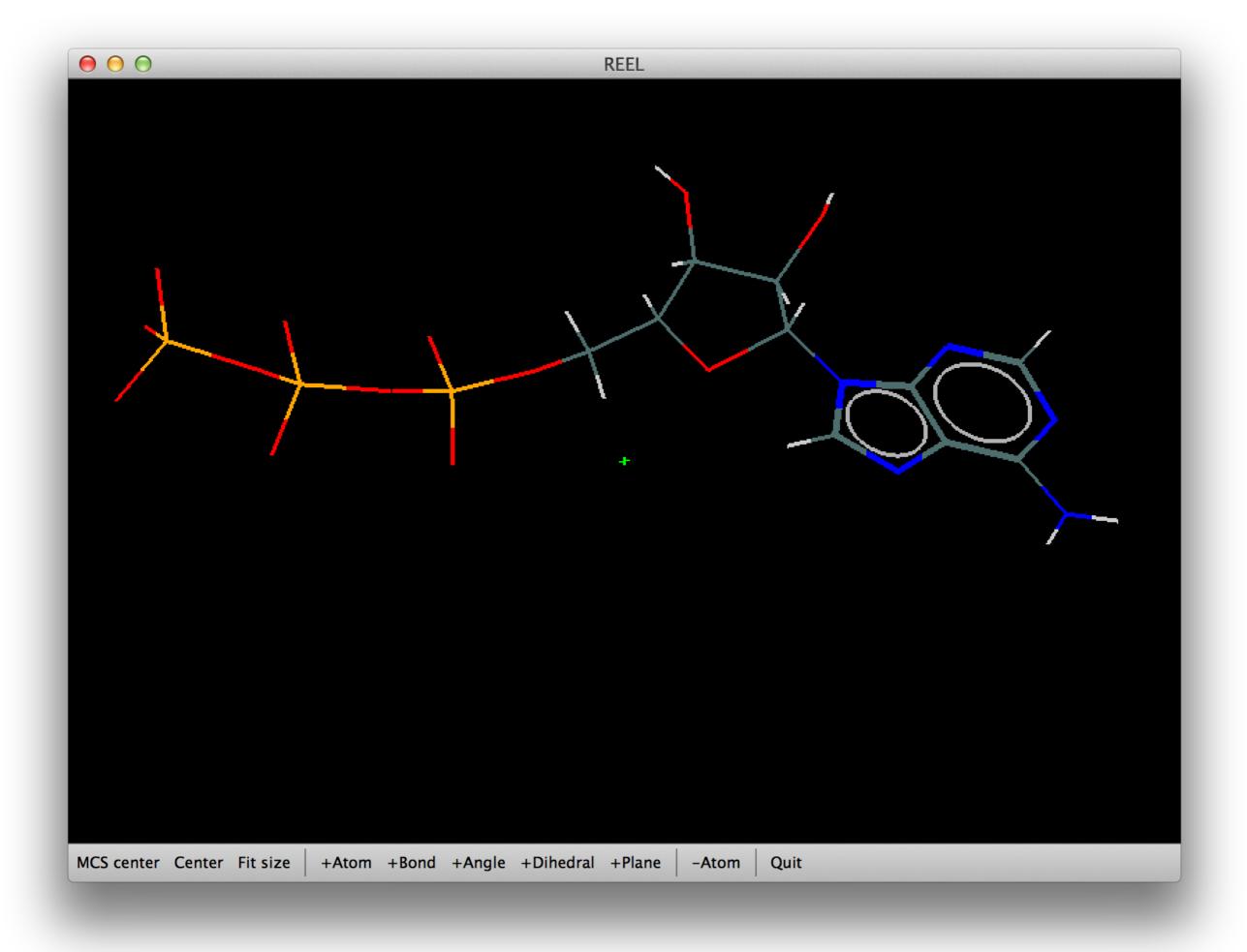

Basic Phenix eLBOW tutorial

2.8K views • 5 years ago

ReadySet!

Prepare a model file for refinement (ReadySet! Refine!!!)

- Add H to protein with *phenix.reduce*.
- Add H to ligands with eLBOW.
- Optional: add H to water, add H/D to neutron model.
- Generate metal coordination files.
- Use the .cif file for the unknown molecule.



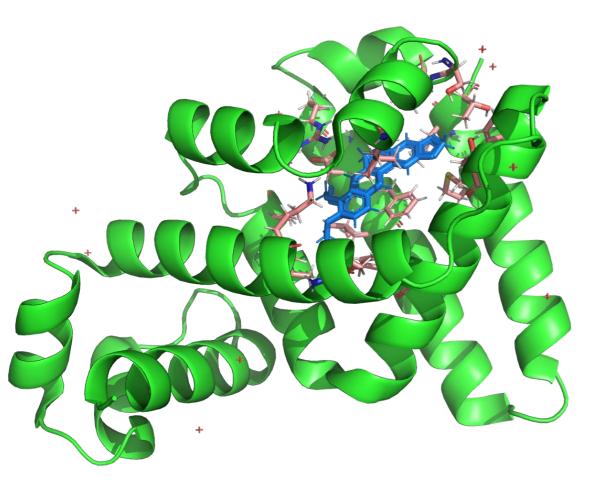
https://phenix-online.org/documentation/reference/ready_set.html

ReadySet!

Restraints Editor, Essentially Ligands (REEL)

- Generate a geometry for a set of restraints
- Modify restraints and generate new geometry
- Fast editing in menu items
- Highlight atom and restraints are highlighted
- Multiple ligands simultaneously
- Highlight restraint and atoms are highlighted
- Save restraints (CIF)
- Save geometry (PDB)
- Run eLBOW

6	3			٢	0		9		Q		
nple Op	timi	isation	eLBOW	Optimisation	AM1 Optim	isation	Search Comp	onents F	Find unique code		
ТР											
toms(4	13)	Bonds(45) Angles	s(78) Dihedra	ls(30) Plane	s(17) C	hirals(4) CisTra	ns Chirals In	nplicit(7) Bo	atChair	- ↓ - ▶
	?	comp_id	atom_id	type_symbol	type_energy	charge	partial_charge	x	у	z	
1		ATP	PG	Р	Р	0		-2.009900	-8.939900	0.927100	
2		ATP	01G	0	0	0		-0.919700	-9.907100	1.322000	
3		ATP	02G	0	OP	-1		-3.257700	-9.235200	1.724400	
4		ATP	03G	0	OP	-1		-2.306500	-9.089900	-0.545900	
5		ATP	PB	Р	Р	0		-0.243200	-6.679500	0.469800	
6		ATP	O1B	0	0	0		1.050300	-7.257000	0.992700	
7		ATP	O2B	0	OP	-1		-0.341900	-6.929700	-1.016000	
8		ATP	O3B	0	02	0		-1.514200	-7.398500	1.233500	
9		ATP	PA	Р	Р	0		0.670000	-3.968400	-0.041400	
10		ATP	01A	0	0	0		0.729800	-4.332500	-1.505600	
11		ATP	02A	0	OP	-1		2.063300	-3.990800	0.540200	
12		ATP	03A	0	02	0		-0.276300	-5.056600	0.757100	
13		ATP	05'	0	02	0		0.029800	-2.458300	0.123600	
14		ATP	C5'	С	CH2	0		0.490600	-1.443000	-0.721300	
15		ATP	C4'	С	CH1	0		-0.438000	-0.204600	-0.596500	
16		ATP	04'	0	02	0	N-	0.055400	0.644000	0.263400	
17		ATP	C3'	С	CH1	0		-0.496500	0.556500	-1.940500	
18		ATP	03'	0	OH1	0		-1.718900	0.408900	-2.511600	
19		ATP	C2'	С	CH1	0		-0.245900	2.038900	-1.588600	
20		ATP	02'	0	OH1	0		-1.282600	2.903300	-2.232200	
21		ATP	C1'	С	CH1	0		-0.345300	2.109700	-0.288400	
22		ATP	N9	N	NR5	0		0.564300	3.101200	0.226900	


(0)	,	E.	33	(6)		Q	Q		
imple Opti	misation	eLBOW Op	timisation	AM1 Optimisatio	on Sea	rch Components	Find unique co	ode	
АТР									4 4
Atoms(43)	Bonds(4	5) Angles(7	8) Dihedra	als(30) Planes(17)	Chirals(4)	CisTrans Ch	irals Implicit(7)	BoatChair	4 ▶
	comp_id	atom_id_1	atom_id_2	type	value_dist	value_dist_esd	value_dist_neutro	on	
1	ATP	PG	01G	deloc	1.510000	0.020000	1.51		
2	ATP	PG	02G	deloc	1.510000	0.020000	1.51		
3	ATP	PG	03G	deloc	1.510000	0.020000	1.51		
4	ATP	PG	O3B	single	1.648000	0.020000	1.648		
5	ATP	PB	O1B	deloc	1.510000	0.020000	1.51		
6	ATP	PB	O2B	deloc	1.510000	0.020000	1.51		
7	ATP	PB	O3B	single	1.648000	0.020000	1.648		
8	ATP	PB	03A	single	1.648000	0.020000	1.648		
9	ATP	PA	01A	deloc	1.510000	0.020000	1.51		
10	ATP	PA	02A	deloc	1.510000	0.020000	1.51		
11	ATP	PA	03A	single	1.648000	0.020000	1.648		
12	ATP	PA	05'	single	1.648000	0.020000	1.648		
13	ATP	05'	C5'	single	1.399000	0.020000	1.399		
14	ATP	C5'	C4'	single	1.553000	0.020000	1.553		
15	ATP	C5'	H5'1	single	0.970000	0.020000	1.09		
16	ATP	C5'	H5'2	single	0.970000	0.020000	1.09		
17	ATP	C4'	04'	single	1.305000	0.020000	1.305		
18	ATP	C4'	C3'	single	1.546000	0.020000	1.546		
19	ATP	C4'	H4'	single	0.970000	0.020000	1.09		
20	ATP	04'	C1'	single	1.617000	0.020000	1.617		
21	ATP	C3'	03'	single	1.357000	0.020000	1.357		
22	ATP	C3'	C2'	single	1.544000	0.020000	1.544		
23	ATP ences loaded	C3'	H3'	sinale	0 970000	0 020000	1 09		

Summary

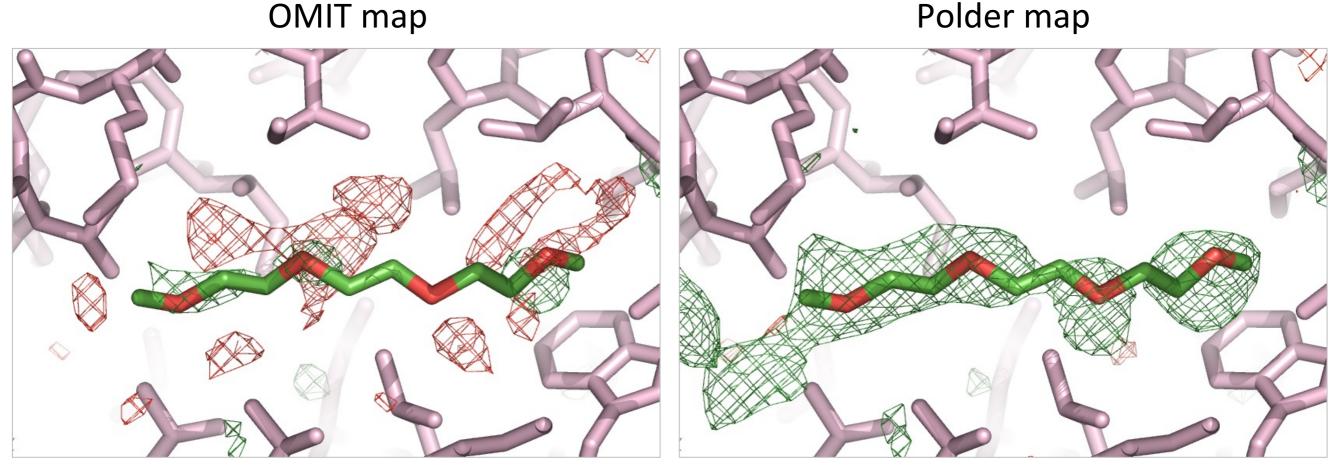
- eLBOW & ReadySet! perform better when provided with better input. (GIGO)
- Need to know something about the ligand Hierarchy of input file value
- Check your .geo file for confirmation of restraints

Restraint generators don't predict

- Chemical variability (configuration or pucker)
- Specific binding interactions

BER in 3vw2

QMR approach:


- Minimize the ligand geometry in the binding pocket.
- Use minimized ligand geometry as targets for restraints.

(forget about what happened with the residues)

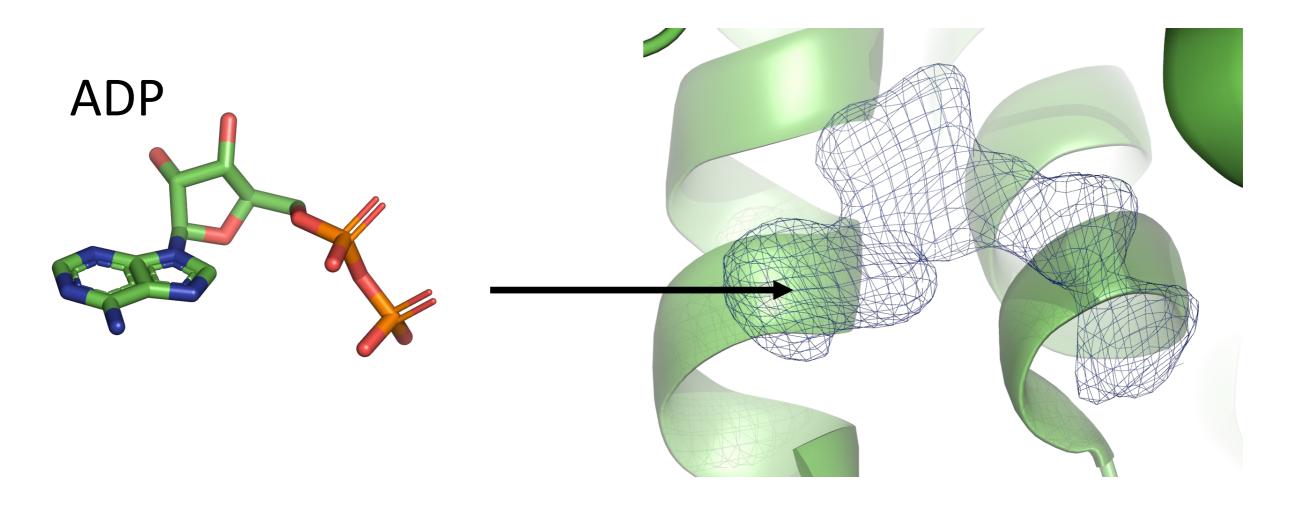
Liebschner D., Moriarty, N.W., Poon, B. K. & Adams, P. D., In situ ligand restraints from quantum-mechanical methods. *Acta Cryst. D.* **79**, 100–110, (2023)

Other tools for ligands in Phenix

• **Polder maps**: OMIT map that excludes the bulk solvent around the ligand to visualize weak densities.

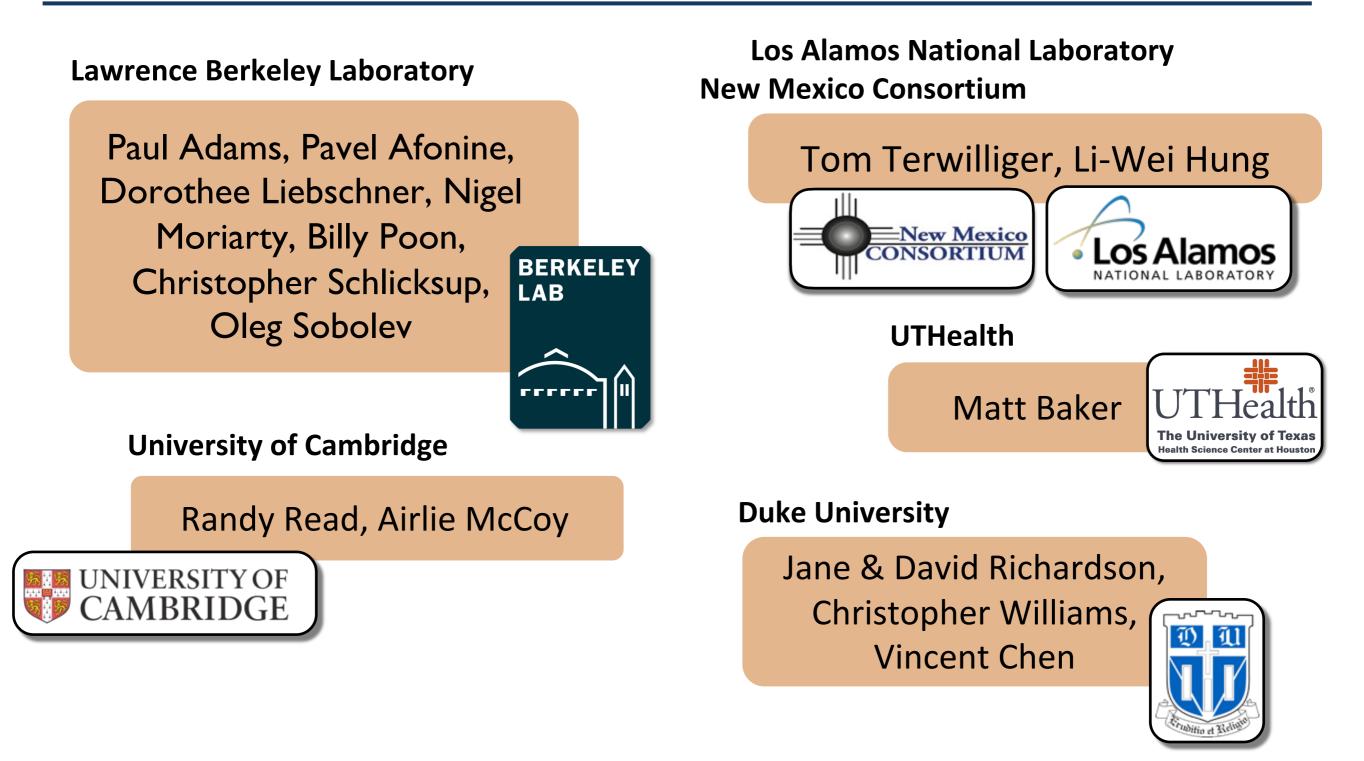
Contour +/- 3 rms

Contour +/- 3 rms


Model: 1iWN Resolution: 2.2 Å Ligand: PG5 201

Other tools for ligands in Phenix

LigandFit: Flexible ligand fitting into difference maps.


Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Automated ligand fitting by core-fragment fitting and extension into density

Thomas C. Terwilliger,^a* Herbert Klei,^b Paul D. Adams,^c Nigel W. Moriarty^c and Judith D. Cohn^a A procedure for fitting of ligands to electron-density maps by first fitting a core fragment of the ligand to density and then extending the remainder of the ligand into density is presented. The approach was tested by fitting 9327 ligands Received 26 January 2006 Accepted 9 May 2006

The Phenix Project

Liebschner D, *et al.*, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in *Phenix*. Acta Cryst. 2019 **D75**:861–877

ReadySet!

- Add hydrogens
 - Default: adds hydrogens to protein, ligands
 - Protein Reduce
 - Ligands eLBOW
 - Add hydrogens to water
 - Add deuteriums instead of hydrogens
 - Add hydrogen & deuteriums appropriately
- Generate restraints

ReadySet!

- Restraints CIF filename
- Restraints CIF directory
- LINKS to "edits"
- -dry-run to show ligand process pathway
- Metal coordination