<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>Welcome: Introduction to Phenix, Introduction to the GUI, set up Phenix</td>
</tr>
<tr>
<td>8:45</td>
<td>Overview -- Strategy for X-ray or Cryo-EM structure determination using AlphaFold models</td>
</tr>
<tr>
<td>9:15</td>
<td>Predicting your structure with AlphaFold and trimming it with ProcessPredictedModel</td>
</tr>
<tr>
<td>9:45</td>
<td>Solving an X-ray structure automatically by MR with PredictAndBuild</td>
</tr>
<tr>
<td>10:15</td>
<td>Break</td>
</tr>
<tr>
<td>10:45</td>
<td>Evaluating X-ray data with Xtriage</td>
</tr>
<tr>
<td>11:00</td>
<td>Xray refinement</td>
</tr>
<tr>
<td>11:30</td>
<td>Xray refinement with AlphaFold reference models</td>
</tr>
<tr>
<td>12:30</td>
<td>Lunch</td>
</tr>
<tr>
<td>13:00</td>
<td>Ligands</td>
</tr>
<tr>
<td>13:30</td>
<td>Cryo-EM Data evaluation with Mtriage</td>
</tr>
<tr>
<td>13:45</td>
<td>Cryo-EM map manipulations, map improvement with LocalAnisoSharpen and ResolveCryoEM</td>
</tr>
<tr>
<td>14:30</td>
<td>Break</td>
</tr>
<tr>
<td>15:00</td>
<td>Automatic cryo-EM map interpretation with PredictAndBuild</td>
</tr>
<tr>
<td>15:30</td>
<td>Cryo-EM refinement</td>
</tr>
<tr>
<td>16:00</td>
<td>Model validation</td>
</tr>
<tr>
<td>16:30</td>
<td>Q&A</td>
</tr>
<tr>
<td>16:50</td>
<td>Finish: workshop survey and wrap up</td>
</tr>
</tbody>
</table>
Phenix User Workshop, July 29 2022

Introduction

Dorothee Liebschner
Lawrence Berkeley Laboratory
Phenix - a Structural Biology Hub

We have nucleated the development of new computational methods for structural biology.
What is *Phenix*?

- Package for **automated structure solution**
- Modern programming concepts and new algorithm development
- Designed to be used by **both novices and experienced users**
- Long-term development and **support**
- Why is it called *Phenix*?

 Python Hierarchical ENvironment for Integrated Xtallography
Key Features

• **Python**
 - Easy scripting of repetitive tasks
 - Enables rapid prototyping and development

• **Advanced algorithms**
 - Experimental phasing
 - Molecular replacement
 - Automated model building and rebuilding
 - Structure refinement and validation
 - Ligand coordinate and restraint generation

• **Rapid development and bug fixing**
Tools for Crystallography

Image of a diagram showing tools for crystallography, including:
- AutoSol
- Xtriage
- LABELIT
- Experimental phasing
- Density modification
- Molecular replacement
- AutoBuild
- Phaser
- Model (Re)building
- MolProbity
- LigandFit
- eLBOW
- Ligand fitting
- Resolve
- phenix.refine
- Refinement
- Deposition
- Table one
 - Prepare PDB deposition
 - Get PDB validation report

References:
Tools for Cryo-EM

Map quality assessment
- Mtriage

Map improvement
- Density Modification
- Auto-sharpen

Map symmetry
- Map-symmetry
- Map-box
- Extract-unique

Model building
- Dock-in-map
- Map-to-model

Docking
- Dock-in-map

Refinement
- Real-space-refine

Validation

Deposition
- Rebuild-predicted-model
- MolProbity
- Mtriage

Phenix GUI

Central GUI to view job control and launch new jobs
Coot/PyMOL integration

• Most results can be opened directly in graphics apps

![Open in Coot and Open in PyMOL]

• Any PDB file listed in GUI can also be opened

• AutoSol, AutoBuild, and phenix.refine will update Coot continuously while running

• Coot must have Python support (default on Mac)

• Specific paths to executables usually required on Linux

Preferences → Graphics → Full path to Coot [...PyMOL]
Command Line Tools

Run on the terminal

- phenix.mtriage
- my_model.pdb, my_map.map
- resolution=4

Run in a python script

```python
try:
    easy_run.call("phenix.mtriage\my_model.pdb\my_map.map")
except Exception as e:
    msg = traceback.format_exc()
    print(msg)
```
Phenix Availability

Phenix-online.org

Supported on:
- Linux (RedHat, Fedora)
- Mac OSX
- Windows

Extensive documentation
(online and via GUI)

Nightly builds

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Status</th>
<th>Logs</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>dev-3758</td>
<td>2020-01-22</td>
<td>successful</td>
<td>ci, intel-linux-2.6-x86_64-centos6, mac-intel-osx-x86_64, intel-windows-x86_64</td>
<td>docs; changelog</td>
</tr>
<tr>
<td>dev-3753</td>
<td>2020-01-17</td>
<td>successful</td>
<td>ci, intel-linux-2.6-x86_64-centos6, mac-intel-osx-x86_64, intel-windows-x86_64</td>
<td>docs; changelog</td>
</tr>
<tr>
<td>dev-3751</td>
<td>2020-01-15</td>
<td>successful</td>
<td>ci, intel-windows-x86_64, intel-linux-2.6-x86_64-centos6, mac-intel-osx-x86_64</td>
<td>docs; changelog</td>
</tr>
<tr>
<td>1.17.1-3660</td>
<td>2019-10-16</td>
<td>successful</td>
<td>ci, intel-windows-x86_64, intel-linux-2.6-x86_64-centos6, mac-intel-osx-x86_64</td>
<td>Official 1.17.1 release; docs; changelog</td>
</tr>
</tbody>
</table>
Accurate predicted models

AlphaFold: a solution to a 50-year-old grand challenge in biology

Sequence
Multiple sequence alignment

3D prediction
New tools for predicted models in Phenix

- Process predicted model
- Dock_predicted_model
- Rebuild predicted model
Acknowledgements

Berkeley Laboratory
Pavel Afonine, Youval Dar, Nat Echols, Jeff Headd, Richard Gildea, Ralf Grosse-Kunstleve, Dorothee Liebschner, Nigel Moriarty, Nader Morshed, Billy Poon, Ian Rees, Nicholas Sauter, Oleg Sobolev, Peter Zwart

Los Alamos Laboratory/New Mexico Consortium
Tom Terwilliger, Li-Wei Hung

Baylor College of Medicine
Matt Baker

Cambridge University
Randy Read, Airlie McCoy, Gabor Bunckozi, Tristan Croll, Rob Oeffner, Kaushik Hatti, Massimo Sammito, Duncan Stockwell, Laurent Storoni

Duke University
Jane Richardson & David Richardson, Ian Davis, Vincent Chen, Jeff Headd, Chris Williams, Bryan Arendall, Bradley Hintze, Laura Murray

UC San Francisco
Ben Barad, Yifan Cheng, Jaime Fraser

University of Washington
Frank DiMaio, Ray Wang, David Baker

Oak Ridge National Laboratory
Marat Mustyakimov, Paul Langan

Other Collaborators
Corey Hryc, Zhao Wang, Wah Chiu
Pawel Janowski, David Case
Dale Tronrud, Donnie Berholz, Andy Karplus
Alexandre Urzhumtsev & Vladimir Lunin
Garib Murshudov & Alexi Vagin
Paul Emsley, Bernhard Lohkamp, Kevin Cowtan
David Abrahams
Phenix Testers & Users

Funding
- NIH/NIGMS: P01GM063210, P50GM062412, P01GM064692, R01GM071939
- PHENIX Industrial Consortium
- Lawrence Berkeley Laboratory
<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>Welcome: Introduction to Phenix, Introduction to the GUI, set up Phenix</td>
</tr>
<tr>
<td>8:45</td>
<td>Overview -- Strategy for X-ray or Cryo-EM structure determination using AlphaFold models</td>
</tr>
<tr>
<td>9:15</td>
<td>Predicting your structure with AlphaFold and trimming it with ProcessPredictedModel</td>
</tr>
<tr>
<td>9:45</td>
<td>Solving an X-ray structure automatically by MR with PredictAndBuild</td>
</tr>
<tr>
<td>10:15</td>
<td>Break</td>
</tr>
<tr>
<td>10:45</td>
<td>Evaluating X-ray data with Xtriage</td>
</tr>
<tr>
<td>11:00</td>
<td>Xray refinement</td>
</tr>
<tr>
<td>11:30</td>
<td>Xray refinement with AlphaFold reference models</td>
</tr>
<tr>
<td>12:30</td>
<td>Lunch</td>
</tr>
<tr>
<td>13:00</td>
<td>Ligands</td>
</tr>
<tr>
<td>13:30</td>
<td>Cryo-EM Data evaluation with Mtriage</td>
</tr>
<tr>
<td>13:45</td>
<td>Cryo-EM map manipulations, map improvement with LocalAnisoSharpen and ResolveCryoEM</td>
</tr>
<tr>
<td>14:30</td>
<td>Break</td>
</tr>
<tr>
<td>15:00</td>
<td>Automatic cryo-EM map interpretation with PredictAndBuild</td>
</tr>
<tr>
<td>15:30</td>
<td>Cryo-EM refinement</td>
</tr>
<tr>
<td>16:00</td>
<td>Model validation</td>
</tr>
<tr>
<td>16:30</td>
<td>Q&A</td>
</tr>
<tr>
<td>16:50</td>
<td>Finish: workshop survey and wrap up</td>
</tr>
</tbody>
</table>