Resolution in cryo-EM, d_{FSC}

- Derived from Fourier Shell Correlation (FCS) between half-maps

Resolution from FSC does not necessarily describe map details but rather signal vs noise
Procedure:
- Compute many model-calculated maps at different resolutions
- Compare each map with experimental map using CC
- Choose resolution that maximizes CC

Requires a model
- May depend on model quality (in reality dependence is weak)
• Map in real space \((\rho)\)

\[
F(s) = \int_{V_{cell}} \rho(r) \exp(2\pi i s r) \, dV
\]

• Map in Fourier space \((F)\)

\[
\rho(r) = \frac{1}{V_{cell}} \sum_{h} \sum_{k} \sum_{l} F(s) \exp(-2\pi i s r)
\]

• Relationship between \(\rho\) and \(F\)
d_{99}

- Crystallography

Reflections in sphere $R = 1/d_{\text{min}}$

d_{min} - highest resolution
d_{99}

- **Protocol:**
 - Remove chunks of highest resolution coefficients
 - Compute map using remaining coefficients
 - Compute CC between original map and new map

Resolution once CC drops 0.99

\[
CC(\rho_{init}, \rho_{cut}) = \left(\sum_{Sbox} F_{map}^2(s) \right)^{-1/2} \left(\sum_{Scut} F_{map}^2(s) \right)^{1/2}
\]