Merging of equivalent reflections

Luc J. Bourhis
(Bruker-AXS SAS, France)

September 5, 2012

Two steps are required to merge equivalent reflections with the cctbx. Given a miller. array m,

1. $\mathrm{m} 1=\mathrm{m}$. map_to_asu() projects each Miller index into the asymmetric unit, i.e. for each group of equivalent reflection, each index of that group is replaced by the same Miller index;
2. merging $=\mathrm{m} 1$.merge_equivalents() finds the group of identical Miller indices, gathers the data and sigma's for each group in turn, computes an average datum and an associated sigma; merging.array() is then the miller.array containing those unique indices associated to those averaged data and sigma.

The first step is only about space-group algebra whereas the second step is only about statistics and this division is therefore optimally orthogonal in a sense. We will now expound each step, starting from the second one.

1 Averaging of equivalent reflections

Given n data y_{1}, \ldots, y_{n} and the associated estimated standard deviations $\sigma_{1}, \ldots, \sigma_{n}$, either the amplitudes or the intensities for a group of symmetry equivalent reflections, we sought to combine those data and sigma's into a single datum and an associated standard deviation.

That merged amplitude or intensity \bar{y} is computed as a weighted average of the $\left\{y_{i}\right\}_{i=1, \ldots, n}$,

$$
\begin{equation*}
\bar{y}=\frac{\sum_{i=1}^{n} w_{i} y_{i}}{\sum_{i=1}^{n} w_{i}} . \tag{1}
\end{equation*}
$$

There are two ways to handle this from a statistical point of view.

1.1 External variance

The first one gives a mathematical meaning to the loose assertion that all y_{i} should be equal within the uncertainties quantified by the σ_{i} (the exact equality is required by those being equivalent reflections but this is spoiled by all sources of errors in measurement
and data processing up to this point). Each y_{i} is then seen as an outcome of a random variable \hat{y}_{i} which is an unbiased estimator for the value $y_{\text {eq }}$ that all equivalent reflections should ideally share, i.e. mathematically

$$
\begin{align*}
E\left(\hat{y}_{i}\right) & =y_{\mathrm{eq}}, \forall i=1, \ldots, n \tag{2}\\
V\left(\hat{y}_{i}\right) & =\sigma_{i}^{2}
\end{align*}
$$

Then the average \bar{y} is the outcome of the random variable

$$
\begin{equation*}
\hat{y}=\frac{\sum_{i=1}^{n} w_{i} \hat{y}_{i}}{\sum_{i=1}^{n} w_{i}} \tag{3}
\end{equation*}
$$

which is obviously an unbiased estimator of $y_{\text {eq }}$ (i.e. $E(\hat{y})=y_{\text {eq }}$). If we postulate that the measurement and data reduction lead to uncorrelated \hat{y}_{i}, then

$$
\begin{equation*}
V(\hat{y})=\sum_{i=1}^{n} \omega_{i}^{2} V\left(\hat{y}_{i}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{i}=\frac{w_{i}}{\sum_{i=1}^{n} w_{i}} . \tag{5}
\end{equation*}
$$

This is often called the "external" variance. Its lowest possible value is obtained for the weights

$$
\begin{equation*}
\tilde{w}_{i}=\frac{1}{V\left(\hat{y}_{i}\right)}=\frac{1}{\sigma_{i}^{2}} \tag{6}
\end{equation*}
$$

as well as for any weights differing from those by a common proportionality factor, as demonstrated in appendix A and this minimum is equal to

$$
\begin{equation*}
V(\hat{y})=\frac{1}{\sum_{i=1}^{n} \tilde{w}_{i}}=\frac{1}{n\left\langle\tilde{w}_{i}\right\rangle} . \tag{7}
\end{equation*}
$$

Those are the weights and the external variance used by the cctbx.
This is not the only popular choice. Indeed ShelXL [?] uses instead

$$
w_{i}= \begin{cases}\frac{y_{i}}{\sigma_{i}^{2}} & \text { if } \frac{y_{i}}{\sigma_{i}}>3 \tag{8}\\ \frac{3}{\sigma_{i}} & \text { otherwise }\end{cases}
$$

1.2 Internal variance

The second way to handle the average (1) is to consider it as a mere sample mean, but a weighted one, ignoring the special property of the y_{i}. Those data are considered as the outcome of a sample $\left(Y_{1}, \ldots, Y_{n}\right)$ of a random variable Y, and \bar{y} is then the outcome of the unbiased estimator of $E(Y)$,

$$
\begin{equation*}
\bar{Y}=\frac{\sum_{i=1}^{n} w_{i} Y_{i}}{\sum_{i=1}^{n} w_{i}} \tag{9}
\end{equation*}
$$

It is then natural to also compute a weighted sample variance

$$
\begin{equation*}
S^{2}=\frac{\sum_{i=1}^{n} w_{i}\left(Y_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n} w_{i}} \tag{10}
\end{equation*}
$$

However, it is a biased estimator of $V(Y)$, as it is well-known in the unweighted case, i.e. all weights w_{i} equal. The unbiased estimator

$$
\begin{align*}
S_{n-1}^{2} & =\frac{S^{2}}{1-\sum_{i=1}^{n} \omega_{i}^{2}} \tag{11}\\
& =\frac{\sum_{i=1}^{n} w_{i}}{\left(\sum_{i=1}^{n} w_{i}\right)^{2}-\sum_{i=1}^{n} w_{i}^{2}} \sum_{i=1}^{n} w_{i}\left(Y_{i}-\bar{Y}\right)^{2} \tag{12}
\end{align*}
$$

is therefore preferred. Those variances are called "internal" as opposed to the variance we have previously discussed. The cctbx computes it by using an instance of scitbx::mean_and_variance and calling its member function gsl_stats_wvariance whose implementation and naming follows the function with the same name in the GNU Scientific Library [?]. Since this formula is not that easily found in textbooks, we demonstrate it in appendix B.

Finally, it is customary to estimate the variance associated with \bar{y} by taking the greatest of the internal and external variance. That is what the cctbx does as well as ShelXL.

Appendix A Minimum variance weights

We will demonstrate eqn (6). We seek the solution of the constrained minimisation problem

$$
\begin{align*}
& \min V(\hat{y}) \tag{13}\\
& V(\hat{y})=\sum_{i=1}^{n} \omega_{i}^{2} V\left(\hat{y}_{i}\right) \tag{14}\\
& \sum_{i=1}^{n} \omega_{i}=1 \tag{15}
\end{align*}
$$

We can solve it by minimising the Lagrangian

$$
\begin{align*}
L & =V(\hat{y})-\lambda \sum_{i=1}^{n} \omega_{i} \tag{16}\\
& =\sum_{i=1}^{n}\left[V\left(\hat{y}_{i}\right)\left(\omega_{i}-\frac{\lambda}{2 V\left(\hat{y}_{i}\right)}\right)^{2}-\frac{\lambda^{2}}{4 V\left(\hat{y}_{i}\right)}\right] \tag{17}
\end{align*}
$$

Thus L reaches its minimum at

$$
\begin{equation*}
\omega_{i}=\frac{\lambda}{2 V\left(\hat{y}_{i}\right)} \tag{18}
\end{equation*}
$$

and using eqn (15), it comes

$$
\begin{equation*}
\frac{\lambda}{2}=\frac{1}{\sum_{i=1}^{n} \frac{1}{V\left(\hat{y}_{i}\right)}} \tag{19}
\end{equation*}
$$

and therefore the minimum is reached at

$$
\begin{equation*}
\omega_{i}=\frac{\frac{1}{V\left(\hat{y}_{i}\right)}}{\sum_{j=1}^{n} \frac{1}{V\left(\hat{y}_{i}\right)}} \tag{20}
\end{equation*}
$$

That demonstrates eqn (6) and since weights differing by a common proportionality factor yield the same ω_{i}, QED.

Appendix B Weighted sample variance

First let us remember that, by definition of a sample,

$$
\begin{align*}
& E\left(Y_{i}\right)=E(Y), \quad \forall i=1, \ldots, n \tag{21}\\
& V\left(Y_{i}\right)=V(Y) \tag{22}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
V(Y) & =\sum_{i=1}^{n} \omega_{i} V\left(Y_{i}\right) \\
& =E\left[\sum_{i=1}^{n} \omega_{i}\left(Y_{i}-E(Y)\right)^{2}\right] \\
& =E\left[\sum_{i=1}^{n} \omega_{i}\left(Y_{i}-\bar{Y}\right)^{2}\right]+2 E\left[\sum_{i=1}^{n} \omega_{i}\left(Y_{i}-\bar{Y}\right)(\bar{Y}-E(Y))\right]+\sum_{i=1}^{n} \omega_{i} E\left[(\bar{Y}-E(Y))^{2}\right]
\end{aligned}
$$

Then,

- since $E(\bar{Y})=E(Y)$, the last term is $V(\bar{Y})$;
- by definition of $\bar{Y}, \sum_{i=1}^{n} \omega_{i}\left(Y_{i}-\bar{Y}\right)=0$ and the second term is therefore 0 .

Thus

$$
\begin{equation*}
V(Y)=E\left(S^{2}\right)+V(\bar{Y}) \tag{23}
\end{equation*}
$$

But

$$
\begin{equation*}
V(\bar{Y})=\sum_{i=1}^{n} \omega_{i}^{2} V(Y) \tag{24}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
V(Y)=\frac{E\left(S^{2}\right)}{1-\sum_{i=1}^{n} \omega_{i}^{2}} \tag{25}
\end{equation*}
$$

