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Two steps are required to merge equivalent reflections with the cctbx. Given a
miller.array m,

1. m1 = m.map to asu() projects each Miller index into the asymmetric unit, i.e. for
each group of equivalent reflection, each index of that group is replaced by the
same Miller index;

2. merging = m1.merge equivalents() finds the group of identical Miller indices,
gathers the data and sigma’s for each group in turn, computes an average datum
and an associated sigma; merging.array() is then the miller.array containing
those unique indices associated to those averaged data and sigma.

The first step is only about space-group algebra whereas the second step is only about
statistics and this division is therefore optimally orthogonal in a sense. We will now
expound each step, starting from the second one.

1 Averaging of equivalent reflections

Given n data y1, . . . , yn and the associated estimated standard deviations σ1, . . . , σn,
either the amplitudes or the intensities for a group of symmetry equivalent reflections,
we sought to combine those data and sigma’s into a single datum and an associated
standard deviation.

That merged amplitude or intensity ȳ is computed as a weighted average of the
{yi}i=1,...,n,

ȳ =

∑n
i=1wiyi∑n
i=1wi

. (1)

There are two ways to handle this from a statistical point of view.

1.1 External variance

The first one gives a mathematical meaning to the loose assertion that all yi should be
equal within the uncertainties quantified by the σi (the exact equality is required by those
being equivalent reflections but this is spoiled by all sources of errors in measurement
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and data processing up to this point). Each yi is then seen as an outcome of a random
variable ŷi which is an unbiased estimator for the value yeq that all equivalent reflections
should ideally share, i.e. mathematically

E(ŷi) = yeq, ∀i = 1, . . . , n (2)

V (ŷi) = σ2i .

Then the average ȳ is the outcome of the random variable

ŷ =

∑n
i=1wiŷi∑n
i=1wi

. (3)

which is obviously an unbiased estimator of yeq (i.e. E(ŷ) = yeq). If we postulate that
the measurement and data reduction lead to uncorrelated ŷi, then

V (ŷ) =
n∑
i=1

ω2
i V (ŷi) (4)

where

ωi =
wi∑n
i=1wi

. (5)

This is often called the “external” variance. Its lowest possible value is obtained for the
weights

w̃i =
1

V (ŷi)
=

1

σ2i
, (6)

as well as for any weights differing from those by a common proportionality factor, as
demonstrated in appendix A and this minimum is equal to

V (ŷ) =
1∑n
i=1 w̃i

=
1

n 〈w̃i〉
. (7)

Those are the weights and the external variance used by the cctbx.
This is not the only popular choice. Indeed ShelXL [? ] uses instead

wi =

{
yi
σ2
i

if yi
σi
> 3,

3
σi

otherwise.
(8)

1.2 Internal variance

The second way to handle the average (1) is to consider it as a mere sample mean, but a
weighted one, ignoring the special property of the yi. Those data are considered as the
outcome of a sample (Y1, . . . , Yn) of a random variable Y , and ȳ is then the outcome of
the unbiased estimator of E(Y ),

Ȳ =

∑n
i=1wiYi∑n
i=1wi

. (9)
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It is then natural to also compute a weighted sample variance

S2 =

∑n
i=1wi(Yi − Ȳ )2∑n

i=1wi
. (10)

However, it is a biased estimator of V (Y ), as it is well-known in the unweighted case,
i.e. all weights wi equal. The unbiased estimator

S2
n−1 =

S2

1−
∑n

i=1 ω
2
i

(11)

=

∑n
i=1wi

(
∑n

i=1wi)
2 −

∑n
i=1w

2
i

n∑
i=1

wi(Yi − Ȳ )2 (12)

is therefore preferred. Those variances are called “internal” as opposed to the vari-
ance we have previously discussed. The cctbx computes it by using an instance of
scitbx::mean and variance and calling its member function gsl stats wvariance

whose implementation and naming follows the function with the same name in the
GNU Scientific Library [? ]. Since this formula is not that easily found in textbooks, we
demonstrate it in appendix B.

Finally, it is customary to estimate the variance associated with ȳ by taking the
greatest of the internal and external variance. That is what the cctbx does as well as
ShelXL.

Appendix A Minimum variance weights

We will demonstrate eqn (6). We seek the solution of the constrained minimisation
problem

minV (ŷ), (13)

V (ŷ) =

n∑
i=1

ω2
i V (ŷi), (14)

n∑
i=1

ωi = 1. (15)

We can solve it by minimising the Lagrangian

L = V (ŷ)− λ
n∑
i=1

ωi, (16)

=

n∑
i=1

[
V (ŷi)

(
ωi −

λ

2V (ŷi)

)2

− λ2

4V (ŷi)

]
(17)
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Thus L reaches its minimum at

ωi =
λ

2V (ŷi)
(18)

and using eqn (15), it comes

λ

2
=

1∑n
i=1

1
V (ŷi)

(19)

and therefore the minimum is reached at

ωi =

1
V (ŷi)∑n
j=1

1
V (ŷi)

. (20)

That demonstrates eqn (6) and since weights differing by a common proportionality
factor yield the same ωi, QED.

Appendix B Weighted sample variance

First let us remember that, by definition of a sample,

E(Yi) = E(Y ), ∀i = 1, . . . , n (21)

V (Yi) = V (Y ) (22)

Therefore,

V (Y ) =
n∑
i=1

ωiV (Yi)

= E

[
n∑
i=1

ωi(Yi − E(Y ))2

]

= E

[
n∑
i=1

ωi(Yi − Ȳ )2

]
+ 2E

[
n∑
i=1

ωi(Yi − Ȳ )(Ȳ − E(Y ))

]
+

n∑
i=1

ωiE
[
(Ȳ − E(Y ))2

]
Then,

• since E(Ȳ ) = E(Y ), the last term is V (Ȳ );

• by definition of Ȳ ,
∑n

i=1 ωi(Yi − Ȳ ) = 0 and the second term is therefore 0.

Thus

V (Y ) = E(S2) + V (Ȳ ). (23)
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But

V (Ȳ ) =

n∑
i=1

ω2
i V (Y ) (24)

and therefore

V (Y ) =
E(S2)

1−
∑n

i=1 ω
2
i

(25)
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