Density modification of cryo EM maps with resolve_cryo_em

Author(s)

Purpose

The routine resolve_cryo_em is a tool for carrying out density modification of cryo-EM maps

Usage

How resolve_cryo_em works:

Density modification with resolve_cryo_em is based on two ideas. One is that the errors in Fourier coefficients representing a cryo-EM map are (to some extent) uncorrelated. This means that one Fourier coefficient does not know about the errors in another one. (Note that this is not including errors that are correlated simply because the molecule is small and is placed in a large map. Correlated errors in this context are those where one Fourier coefficient has been adjusted to compensate for errors in another one.)

The other is that some features in a map are known in advance. This could include features such as the flatness of the solvent region, distributions of map values in the solvent and macromolecule region, similarities of symmetry-related regions.

Then the way density modification works is that Fourier coefficients for the map are adjusted to agree both with the original map and with the expected features. This improves the Fourier coefficients, and the key result is that the map improves everywhere, not just where the information about expected features was available.

Unique features of density modification for cryo-EM are that two half-maps with independent errors are available in cryo-EM (allowing estimation of errors), and that the errors in Fourier coefficients are (more or less) distributed as two-dimensional Gaussians (i.e both phase and amplitude errors). This leads to many differences in implementation density modification in crystallography though core elements are identical.

Using resolve_cryo_em:

Normally you will access the functionality of resolve_cryo_em by running the Phenix map_to_model tool in the Phenix GUI. However you can run it directly as well (there is no GUI for resolve_cryo_em).

Half-maps: Supply two unmasked half maps. They can be sharpened but it does not make much of a difference.

Sequence file: Supply a sequence file with the sequence of the molecule. Be sure to put in all copies of the molecule (i.e. a 24-mer needs 24 chains).

Procedure used by resolve_cryo_em

The inputs to resolve_cryo_em are:

Two unmasked half-maps
sequence file or molecular mass or solvent fraction

The procedure used by resolve_cryo_em has several steps:

Boxing of maps:  If the supplied maps are much larger than the molecule,
the maps are trimmed down to about 5 A bigger than the largest dimension
of the molecule (estimated from a low-res mask and the molecular
volume based on sequence or as specified) in each direction.

Resolution estimate and half-map sharpening of maps: The half-maps are
compared as a function of resolution and the resolution (FSC=0.143)
is estimated and the maps are sharpened based on the estimated map quality
of the full (averaged) map.  A full map is calculated.

Generation of map-value (density) histograms:  The full map is analyzed
to identify the distribution of map values in the solvent and
macromolecule region.  These histograms are to be used in density
modification.

Density modification of half-maps:  Each half map is density-modified
using maximum-likelihood density modification. The histograms of map
values from the preceding step are used as targets indicating what the
distribution should be in the density modified maps.

Estimation of errors:  Fourier coefficients for the two starting
half-maps and the two density-modified maps are compared to give FSC
values as a function of resolution.  These FSC values are used to estimate
correlated and uncorrelated errors in the four maps and to identify
optimal weighting between original and density-modified maps.

Optional real-space and sigma weighting:  The smoothed local rms differences
between original half maps and between density-modified half maps are
used (optionally) to identify location-specific weighting for the
original and density-modified maps.  The variance of Fourier coefficients
among the four maps are used (optionally) to weight individual final
Fourier coefficients.

Optional spectral scaling and local sharpening.  The final
map is optionally scaled with a resolution-dependent scale factor
representing the radial part of a typical Fourier transform of a
macromolecule.  The final map is optionally locally resolution-filtered
(local sharpening).  The final map is also optionally blurred slightly
with a blurring dependent on the overall resolution of the map.

Examples

Standard run of resolve_cryo_em:

You can use resolve_cryo_em to density-modify a cryo-EM map:

phenix.resolve_cryo_em half_map_A.mrc half_map_B.mrc seq_file=seq.dat

Possible Problems

If the half-maps have been masked the procedure may not work well. If the maps have very prominent density away from the macromolecule this may interfere with density modification. If there is non-macromolecule but real density in the maps this may interfere with density modification (for example, lipid density).

Specific limitations and problems:

The density modification procedure works best in the resolution range of about 4.5 A or better.

Literature

Additional information

List of all available keywords